-
1
-
-
0003568098
-
-
Springer-Verlag, NY
-
Alligood, K., Sauer, T. & Yorke, J. [1997] Chaos, An Introduction to Dynamical Systems (Springer-Verlag, NY).
-
(1997)
Chaos, An Introduction to Dynamical Systems
-
-
Alligood, K.1
Sauer, T.2
Yorke, J.3
-
2
-
-
0011285982
-
Design of one-dimensional chaotic maps with prescribed statistical properties
-
Baranovsky, A. & Daems, D. [1995] "Design of one-dimensional chaotic maps with prescribed statistical properties," Int. J. Bifurcation and Chaos 5(6), 1585-1598.
-
(1995)
Int. J. Bifurcation and Chaos
, vol.5
, Issue.6
, pp. 1585-1598
-
-
Baranovsky, A.1
Daems, D.2
-
3
-
-
0001870459
-
The dynamics of the Hénon map
-
Benedicks, M. & Carleson, L. [1991] "The dynamics of the Hénon map," Ann. Math. 133(1), 73-169.
-
(1991)
Ann. Math.
, vol.133
, Issue.1
, pp. 73-169
-
-
Benedicks, M.1
Carleson, L.2
-
4
-
-
33845317713
-
Sinai-Bowen-Ruelle measures for certain Hénon maps
-
Benedicks, M. & Young, L.-S. [1993] "Sinai-Bowen-Ruelle measures for certain Hénon maps," Invent. Math. 112(3), 541-576.
-
(1993)
Invent. Math.
, vol.112
, Issue.3
, pp. 541-576
-
-
Benedicks, M.1
Young, L.-S.2
-
5
-
-
0043096887
-
Optimal targeting of chaos
-
Bollt, E. & Kostelich, E. [1998] "Optimal targeting of chaos," Phys. Lett. A245(5), 399-406.
-
(1998)
Phys. Lett.
, vol.A245
, Issue.5
, pp. 399-406
-
-
Bollt, E.1
Kostelich, E.2
-
6
-
-
0001187423
-
Controlling chaos through recurrence
-
Bollt, E. & Meiss, J. [1995] "Controlling chaos through recurrence," Physica D81 280-294.
-
(1995)
Physica
, vol.D81
, pp. 280-294
-
-
Bollt, E.1
Meiss, J.2
-
7
-
-
0013501719
-
The ergodic theory of Axiom A flows
-
Bowen, R. & Ruelle, D. [1975] "The ergodic theory of Axiom A flows," Invent. Math. 29(3), 181-202.
-
(1975)
Invent. Math.
, vol.29
, Issue.3
, pp. 181-202
-
-
Bowen, R.1
Ruelle, D.2
-
8
-
-
0002210006
-
Laws of chaos. Invariant measures and dynamical systems in one dimension
-
Birkhäuser Boston, Inc. Boston, MA
-
Boyarsky, A. & Góra, P. [1997] "Laws of chaos. Invariant measures and dynamical systems in one dimension," Probability and Its Applications (Birkhäuser Boston, Inc. Boston, MA), xvi+399pp.
-
(1997)
Probability and Its Applications
-
-
Boyarsky, A.1
Góra, P.2
-
9
-
-
0011580612
-
All invariant densities of piecewise linear Markov maps are piecewise constant
-
Boyarsky, A. & Haddad, G. [1981] All invariant densities of piecewise linear Markov maps are piecewise constant," Adv. Appl. Math. 2(3), 284-289.
-
(1981)
Adv. Appl. Math.
, vol.2
, Issue.3
, pp. 284-289
-
-
Boyarsky, A.1
Haddad, G.2
-
10
-
-
0000639701
-
Approximating measures invariant under higher-dimensional chaotic transformations
-
Boyarsky, A. & Lou, Y.-S. [1991] "Approximating measures invariant under higher-dimensional chaotic transformations," J. Approx. Th. 65(2), 231-244.
-
(1991)
J. Approx. Th.
, vol.65
, Issue.2
, pp. 231-244
-
-
Boyarsky, A.1
Lou, Y.-S.2
-
11
-
-
0003467886
-
-
World Scientific, Singapore
-
Chen, G. & Dong, X. [1998] From Chaos to Order: Perspectives, Methodologies, and Applications (World Scientific, Singapore).
-
(1998)
From Chaos to Order: Perspectives, Methodologies, and Applications
-
-
Chen, G.1
Dong, X.2
-
13
-
-
0001143794
-
On the construction of one-dimensional iterative maps from the invariant density: The dynamical route to the beta distribution
-
Diakonos, F. K. & Schmelcher, P. [1996] "On the construction of one-dimensional iterative maps from the invariant density: The dynamical route to the beta distribution," Phys. Lett. A211(4), 199-203.
-
(1996)
Phys. Lett.
, vol.A211
, Issue.4
, pp. 199-203
-
-
Diakonos, F.K.1
Schmelcher, P.2
-
14
-
-
21844521620
-
The projection method for computing multidimensional absolutely continuous invariant measures
-
Ding, J., Zhou & A. H. [1994] "The projection method for computing multidimensional absolutely continuous invariant measures," J. Stat. Phys. 77(3&4), 899-908.
-
(1994)
J. Stat. Phys.
, vol.77
, Issue.3-4
, pp. 899-908
-
-
Ding, J.1
Zhou, A.H.2
-
15
-
-
0000719291
-
Piecewise linear Markov approximations of Frobenius-Perron operators associated with multi-dimensional transformations
-
Ding, J. & Zhou, A. H. [1995] "Piecewise linear Markov approximations of Frobenius-Perron operators associated with multi-dimensional transformations," Nonlin. Anal. 25(4), 399-408.
-
(1995)
Nonlin. Anal.
, vol.25
, Issue.4
, pp. 399-408
-
-
Ding, J.1
Zhou, A.H.2
-
16
-
-
0001293196
-
Finite approximation of Sinai-Bowen-Ruelle measures for Anosov systems in two dimensions
-
Froyland, G. [1995] "Finite approximation of Sinai-Bowen-Ruelle measures for Anosov systems in two dimensions," Random Comput. Dyn. 3(4), 251-263.
-
(1995)
Random Comput. Dyn.
, vol.3
, Issue.4
, pp. 251-263
-
-
Froyland, G.1
-
17
-
-
0001034525
-
Computing physical invariant measures
-
Japan, Research Society of Nonlinear Theory and its Applications (IEICE)
-
Froyland, G. [1997] "Computing physical invariant measures," Int. Symp. Nonlinear Theory and its Applications, Japan, Research Society of Nonlinear Theory and its Applications (IEICE) 2, pp. 1129-1132.
-
(1997)
Int. Symp. Nonlinear Theory and its Applications
, vol.2
, pp. 1129-1132
-
-
Froyland, G.1
-
19
-
-
0000318085
-
A matrix solution to the inverse Perron-Frobenius problem
-
Góra, P. & Boyarsky, A. [1993] "A matrix solution to the inverse Perron-Frobenius problem," Proc. Am. Math. Soc. 118(2), 409-414.
-
(1993)
Proc. Am. Math. Soc.
, vol.118
, Issue.2
, pp. 409-414
-
-
Góra, P.1
Boyarsky, A.2
-
20
-
-
0002515326
-
An algorithm to control chaotic behavior in one-dimensional maps
-
Góra, P. & Boyarsky, A. [1996] "An algorithm to control chaotic behavior in one-dimensional maps," Comput. Math. Appl. 31(6), 13-22.
-
(1996)
Comput. Math. Appl.
, vol.31
, Issue.6
, pp. 13-22
-
-
Góra, P.1
Boyarsky, A.2
-
21
-
-
0007380698
-
A new approach to controlling chaotic systems
-
Góra, P. & Boyarsky, A. [1998] "A new approach to controlling chaotic systems," Phys. D111(1-4), 1-15.
-
(1998)
Phys.
, vol.D111
, Issue.1-4
, pp. 1-15
-
-
Góra, P.1
Boyarsky, A.2
-
22
-
-
84926767644
-
Invariant distributions and stationary correlation functions of one-dimensional discrete processes
-
Grossmann, S. & Thomae, S. [1977] Invariant distributions and stationary correlation functions of one-dimensional discrete processes," Z. Naturforsch. 32a(12), 1353-1363.
-
(1977)
Z. Naturforsch.
, vol.32 A
, Issue.12
, pp. 1353-1363
-
-
Grossmann, S.1
Thomae, S.2
-
23
-
-
34250119129
-
Algebraic decay in self-similar Markov chains
-
Hanson, J. D., Cary, J. R. & Meiss, J. D. [1985] "Algebraic decay in self-similar Markov chains," J. Stat. Phys. 39(3&4), 327-345.
-
(1985)
J. Stat. Phys.
, vol.39
, Issue.3-4
, pp. 327-345
-
-
Hanson, J.D.1
Cary, J.R.2
Meiss, J.D.3
-
24
-
-
0002591468
-
A two-dimensional mapping with a strange attractor
-
Hénon, M. [1976] "A two-dimensional mapping with a strange attractor," Commun. Math. Phys. 50(1) 69-77.
-
(1976)
Commun. Math. Phys.
, vol.50
, Issue.1
, pp. 69-77
-
-
Hénon, M.1
-
26
-
-
0001647183
-
The inverse problem of Frobenius-Perron equations in 1D difference systems 1D map idealization
-
Koga, S. [1991] "The inverse problem of Frobenius-Perron equations in 1D difference systems 1D map idealization," Progr. Theoret. Phys. 86(5), 991-1002.
-
(1991)
Progr. Theoret. Phys.
, vol.86
, Issue.5
, pp. 991-1002
-
-
Koga, S.1
-
28
-
-
0001673690
-
Higher dimensional targeting
-
Kostelich, E. J., Grebogi, C., Ott, E. & Yorke, J. A. [1993] "Higher dimensional targeting," Phys. Rev. E47, 305-310.
-
(1993)
Phys. Rev.
, vol.E47
, pp. 305-310
-
-
Kostelich, E.J.1
Grebogi, C.2
Ott, E.3
Yorke, J.A.4
-
29
-
-
0000906011
-
How often are chaotic saddles nonhyperbolic?
-
Lai, Y.-C., Grebogi, C., Yorke, J. A. & Kan, I. [1993] "How often are chaotic saddles nonhyperbolic?" Nonlinearity 6(5), 779-797.
-
(1993)
Nonlinearity
, vol.6
, Issue.5
, pp. 779-797
-
-
Lai, Y.-C.1
Grebogi, C.2
Yorke, J.A.3
Kan, I.4
-
30
-
-
0004116528
-
-
Springer-Verlag, NY
-
Lasota, A. & Mackey, M. [1997] Chaos, Fractals, and Noise, 2nd edition (Springer-Verlag, NY).
-
(1997)
Chaos, Fractals, and Noise, 2nd Edition
-
-
Lasota, A.1
Mackey, M.2
-
31
-
-
0001062377
-
Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture
-
Li, T. Y. [1976] "Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture," J. Approx. Th. 17(2), 177-186.
-
(1976)
J. Approx. Th.
, vol.17
, Issue.2
, pp. 177-186
-
-
Li, T.Y.1
-
32
-
-
48549109299
-
Transport in Hamiltonian systems
-
MacKay, R. S., Meiss, J. D. & Percival, I. C. [1984] "Transport in Hamiltonian systems," Phys. D13(1&2), 55-81.
-
(1984)
Phys.
, vol.D13
, Issue.1-2
, pp. 55-81
-
-
MacKay, R.S.1
Meiss, J.D.2
Percival, I.C.3
-
33
-
-
0001741383
-
Time-correlation functions of one-dimensional transformations
-
Mori, H., So, B.-C. & Ose, T. [1981] "Time-correlation functions of one-dimensional transformations," Progr. Theoret. Phys. 66(4), 1266-1283.
-
(1981)
Progr. Theoret. Phys.
, vol.66
, Issue.4
, pp. 1266-1283
-
-
Mori, H.1
So, B.-C.2
Ose, T.3
-
35
-
-
4243489552
-
-
Ott, E., Grebogi, C. & Yorke, J. A. [1990] Controlling Chaos 64, 1196-1199.
-
(1990)
Controlling Chaos
, vol.64
, pp. 1196-1199
-
-
Ott, E.1
Grebogi, C.2
Yorke, J.A.3
-
36
-
-
0000230132
-
Theory and examples of the inverse Frobenius-Perron problem for complete chaotic maps
-
Pingel, D., Schmeicher, P. & Diakonos, F. K. [1999] "Theory and examples of the inverse Frobenius-Perron problem for complete chaotic maps," Chaos 9(2), 357-366.
-
(1999)
Chaos
, vol.9
, Issue.2
, pp. 357-366
-
-
Pingel, D.1
Schmeicher, P.2
Diakonos, F.K.3
-
37
-
-
0003474751
-
-
Cambride Univ. Press, Melbourne, Australia
-
Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. [1992] Numerical Recipes in Fortran 77, The Art of Scientific Computing, 2nd edition (Cambride Univ. Press, Melbourne, Australia).
-
(1992)
Numerical Recipes in Fortran 77, The Art of Scientific Computing, 2nd Edition
-
-
Press, W.1
Teukolsky, S.2
Vetterling, W.3
Flannery, B.4
-
38
-
-
0001504277
-
Inadequacy of the bounded variation technique in the ergodic theory of higher-dimensional transformations
-
Proppe, H., Góra, P. & Boyarsky, A. [1990] "Inadequacy of the bounded variation technique in the ergodic theory of higher-dimensional transformations," Nonlinearity 3(4), 1081-1087.
-
(1990)
Nonlinearity
, vol.3
, Issue.4
, pp. 1081-1087
-
-
Proppe, H.1
Góra, P.2
Boyarsky, A.3
-
39
-
-
0001632122
-
Predictive Poincaré control: A control theory for chaotic systems
-
Schweizer, J. & Kennedy, M. P. [1995] "Predictive Poincaré control: A control theory for chaotic systems," Phys. Rev. E52, 4865-4876.
-
(1995)
Phys. Rev.
, vol.E52
, pp. 4865-4876
-
-
Schweizer, J.1
Kennedy, M.P.2
-
40
-
-
0000601493
-
Using small perturbations to control chaos
-
Shinbrot, T., Grebogi, C., Ott, E. & Yorke, J. A. [1993] "Using small perturbations to control chaos," Nature 363 (6428), 411-417.
-
(1993)
Nature
, vol.363
, Issue.6428
, pp. 411-417
-
-
Shinbrot, T.1
Grebogi, C.2
Ott, E.3
Yorke, J.A.4
-
41
-
-
0000725751
-
A collection of mathematical problems
-
Interscience Publishers, NY-London, xiii+150pp
-
Ulam, S. M. [1960] "A collection of mathematical problems," Interscience Tracts in Pure and Applied Mathematics 8 (Interscience Publishers, NY-London), xiii+150pp.
-
(1960)
Interscience Tracts in Pure and Applied Mathematics
, vol.8
-
-
Ulam, S.M.1
|