-
1
-
-
0020104118
-
Sur la generalisation de la theorie de Lorenz-Mie
-
G. Gouesbet and G. Grehan, “Sur la generalisation de la theorie de Lorenz-Mie, ” J. Opt. (Paris) 13, 97-103 (1982).
-
(1982)
J. Opt. (Paris)
, vol.13
, pp. 97-103
-
-
Gouesbet, G.1
Grehan, G.2
-
2
-
-
0041944159
-
Scattering of a Gaussian beam by a Mie scatterer centre using a Bromwich formalism
-
G. Gouesbet, G. Grehan, and B. Maheau, “Scattering of a Gaussian beam by a Mie scatterer centre using a Bromwich formalism, ” J. Opt. (Paris) 16, 89-93 (1985).
-
(1985)
J. Opt. (Paris)
, vol.16
, pp. 89-93
-
-
Gouesbet, G.1
Grehan, G.2
Maheau, B.3
-
3
-
-
0000699886
-
Scattering of laser beams by Mie scatterer centers: Numerical results using a localized approximation
-
G. Grehan, B. Maheau, and G. Gouesbet, “Scattering of laser beams by Mie scatterer centers: numerical results using a localized approximation, ” Appl. Opt. 25, 3539-3548 (1986).
-
(1986)
Appl. Opt.
, vol.25
, pp. 3539-3548
-
-
Grehan, G.1
Maheau, B.2
Gouesbet, G.3
-
4
-
-
20444374897
-
Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation
-
G. Gouesbet, B. Maheau, and G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation, ” J. Opt. Soc. Am. A 5, 1427-1443 (1989).
-
(1989)
J. Opt. Soc. Am. A
, vol.5
, pp. 1427-1443
-
-
Gouesbet, G.1
Maheau, B.2
Grehan, G.3
-
5
-
-
0000688498
-
Internal and near-surface electromagnetic fields for spherical particle irradiated by a focused laser beam
-
J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for spherical particle irradiated by a focused laser beam, ” J. Appl. Phys. 64, 1632-1639 (1988).
-
(1988)
J. Appl. Phys.
, vol.64
, pp. 1632-1639
-
-
Barton, J.P.1
Alexander, D.R.2
Schaub, S.A.3
-
6
-
-
0027554641
-
Scattered an internal intensity of a sphere illuminated with a Gaussian beam
-
E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Scattered an internal intensity of a sphere illuminated with a Gaussian beam, ” IEEE Trans. Antennas Propag. 41, 295-303 (1993).
-
(1993)
IEEE Trans. Antennas Propag.
, vol.41
, pp. 295-303
-
-
Khaled, E.E.M.1
Hill, S.C.2
Barber, P.W.3
-
7
-
-
0028515368
-
Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams
-
J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams, ” J. Opt. Soc. Am. A 11, 2503-2515 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 2503-2515
-
-
Lock, J.A.1
Gouesbet, G.2
-
8
-
-
0028515482
-
Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams
-
G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams, ” J. Opt. Soc. Am. A 11, 2516-2525 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 2516-2525
-
-
Gouesbet, G.1
Lock, J.A.2
-
9
-
-
0023966464
-
A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident beam
-
B. Maheau, G. Gouesbet, and G. Grehan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident beam, ” J. Opt. (Paris) 19, 59-67 (1988).
-
(1988)
J. Opt. (Paris)
, vol.19
, pp. 59-67
-
-
Maheau, B.1
Gouesbet, G.2
Grehan, G.3
-
10
-
-
0000699886
-
Scattering of laser beams by Mie scatterer centers: Numerical results using a localized approximation
-
G. Grehan, B. Maheau, and G. Gouesbet, “Scattering of laser beams by Mie scatterer centers: numerical results using a localized approximation, ” Appl. Opt. 25, 3539-3548 (1986).
-
(1986)
Appl. Opt.
, vol.25
, pp. 3539-3548
-
-
Grehan, G.1
Maheau, B.2
Gouesbet, G.3
-
11
-
-
0009380363
-
A localized interpretation to compute all the coefficients gnm in the generalized Lorenz-Mie theory
-
m in the generalized Lorenz-Mie theory, ” J. Opt. Soc. Am. A 7, 998-1007 (1990).
-
(1990)
J. Opt. Soc. Am. A
, vol.7
, pp. 998-1007
-
-
Gouesbet, G.1
Grehan, G.2
Maheau, B.3
-
12
-
-
0001002474
-
Theory of electromagnetic beams
-
L. W. Davis, “Theory of electromagnetic beams, ” Phys. Rev. A 19, 1177-1179 (1979).
-
(1979)
Phys. Rev. A
, vol.19
, pp. 1177-1179
-
-
Davis, L.W.1
-
13
-
-
84975606862
-
Computation of the gn coefficients in the generalized Lorenz-Mie theory using three different methods
-
n coefficients in the generalized Lorenz-Mie theory using three different methods, ” Appl. Opt. 27, 4874-4883 (1988).
-
(1988)
Appl. Opt.
, vol.27
, pp. 4874-4883
-
-
Gouesbet, G.1
Grehan, G.2
Maheau, B.3
-
14
-
-
0343278719
-
Generalized Lorenz-Mie theory for non-spherical particles with applications in the Phase-Doppler anemometrie
-
F. Durst and J. Domnick, eds. (Nürnberg Messe GmbH, Nürnberg, Germany
-
A. Doicu, S. Schabel, and F. Ebert, “Generalized Lorenz-Mie theory for non-spherical particles with applications in the Phase-Doppler anemometrie, ” in Proceedings of the Fourth International Congress on Optical Particle Sizing, F. Durst and J. Domnick, eds. (Nürnberg Messe GmbH, Nürnberg, Germany, 1995), pp. 119-128.
-
(1995)
Proceedings of the Fourth International Congress on Optical Particle Sizing
, pp. 119-128
-
-
Doicu, A.1
Schabel, S.2
Ebert, F.3
-
15
-
-
0002437035
-
Addition theorems for spherical waves
-
B. Friedman and J. Russek, “Addition theorems for spherical waves, ” Q. Appl. Math. 12, 13-23 (1954).
-
(1954)
Q. Appl. Math.
, vol.12
, pp. 13-23
-
-
Friedman, B.1
Russek, J.2
-
16
-
-
0002523464
-
Addition theorems for spherical wave functions
-
S. Stein, “Addition theorems for spherical wave functions, ” Q. Appl. Math. 19, 15-24 (1961).
-
(1961)
Q. Appl. Math.
, vol.19
, pp. 15-24
-
-
Stein, S.1
-
17
-
-
0003074846
-
Translational addition theorems for spherical vector wave functions
-
O. R. Cruzan, “Translational addition theorems for spherical vector wave functions, ” Q. Appl. Math. 20, 33-40 (1962).
-
(1962)
Q. Appl. Math.
, vol.20
, pp. 33-40
-
-
Cruzan, O.R.1
-
18
-
-
79952517701
-
Multiple scattering of EM waves by spheres—Part I—Multipole expansion and ray-optical solution
-
J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres—Part I—Multipole expansion and ray-optical solution, ” IEEE Trans. Antennas. Propag. 19, 378-390 (1971).
-
(1971)
IEEE Trans. Antennas. Propag.
, vol.19
, pp. 378-390
-
-
Bruning, J.H.1
Lo, Y.T.2
-
19
-
-
0003930336
-
-
Editura Stiintifica, Bucur-esti
-
A. Messiah, Quantum Mechanics (Editura Stiintifica, Bucur-esti, 1974).
-
(1974)
Quantum Mechanics
-
-
Messiah, A.1
-
21
-
-
0027578690
-
Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle
-
J. A. Lock, “Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle, ” J. Opt. Soc. Am. A 10, 693-706 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 693-706
-
-
Lock, J.A.1
-
23
-
-
5244306082
-
Plane wave spectrum method of electromagnetic beams
-
T. Wriedt, M. Quinten, and K. Bauckhage, eds. (Universität Bremen, Bremen, Germany
-
A. Doicu and T. Wriedt, “Plane wave spectrum method of electromagnetic beams, ” in Proceedings of the First Workshop on Electromagnetic and Light Scattering—Theory and Applications, T. Wriedt, M. Quinten, and K. Bauckhage, eds. (Universität Bremen, Bremen, Germany, 1996), pp. 33-37.
-
(1996)
Proceedings of the First Workshop on Electromagnetic and Light Scattering—Theory and Applications
, pp. 33-37
-
-
Doicu, A.1
Wriedt, T.2
|