메뉴 건너뛰기




Volumn 104, Issue 19, 2000, Pages 4533-4548

Free Energetics of NaI Contact and Solvent-Separated Ion Pairs in Water Clusters

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0008137770     PISSN: 10895639     EISSN: None     Source Type: Journal    
DOI: 10.1021/jp993641t     Document Type: Article
Times cited : (69)

References (198)
  • 2
  • 5
    • 0001638204 scopus 로고
    • Coe, J. V. Chem. Phys. Lett. 1994, 229, 161. Coe, J. V. J. Phys. Chem. A 1997, 101, 2055.
    • (1994) Chem. Phys. Lett. , vol.229 , pp. 161
    • Coe, J.V.1
  • 6
    • 0031094244 scopus 로고    scopus 로고
    • Coe, J. V. Chem. Phys. Lett. 1994, 229, 161. Coe, J. V. J. Phys. Chem. A 1997, 101, 2055.
    • (1997) J. Phys. Chem. A , vol.101 , pp. 2055
    • Coe, J.V.1
  • 11
    • 0000139976 scopus 로고
    • (a) See, e.g., Perez, P.; Lee, W. K.; Prohofsky, E. W. J. Chem. Phys. 1983, 79, 388. Jorgensen, W. L.; Severance, D. L. J. Chem. Phys. 1993, 99,4233. Markovich, G.; Perera, L.; Berkowitz, M. L.; Cheshnovsky, O. J. Chem. Phys. 1996, 105, 2675. Truong, T. N.; Stefanovich, E. V. Chem. Phys. 1997, 218, 31.
    • (1983) J. Chem. Phys. , vol.79 , pp. 388
    • Perez, P.1    Lee, W.K.2    Prohofsky, E.W.3
  • 12
    • 0000732151 scopus 로고
    • (a) See, e.g., Perez, P.; Lee, W. K.; Prohofsky, E. W. J. Chem. Phys. 1983, 79, 388. Jorgensen, W. L.; Severance, D. L. J. Chem. Phys. 1993, 99,4233. Markovich, G.; Perera, L.; Berkowitz, M. L.; Cheshnovsky, O. J. Chem. Phys. 1996, 105, 2675. Truong, T. N.; Stefanovich, E. V. Chem. Phys. 1997, 218, 31.
    • (1993) J. Chem. Phys. , vol.99 , pp. 4233
    • Jorgensen, W.L.1    Severance, D.L.2
  • 13
    • 0001240846 scopus 로고    scopus 로고
    • (a) See, e.g., Perez, P.; Lee, W. K.; Prohofsky, E. W. J. Chem. Phys. 1983, 79, 388. Jorgensen, W. L.; Severance, D. L. J. Chem. Phys. 1993, 99,4233. Markovich, G.; Perera, L.; Berkowitz, M. L.; Cheshnovsky, O. J. Chem. Phys. 1996, 105, 2675. Truong, T. N.; Stefanovich, E. V. Chem. Phys. 1997, 218, 31.
    • (1996) J. Chem. Phys. , vol.105 , pp. 2675
    • Markovich, G.1    Perera, L.2    Berkowitz, M.L.3    Cheshnovsky, O.4
  • 14
    • 0031570131 scopus 로고    scopus 로고
    • (a) See, e.g., Perez, P.; Lee, W. K.; Prohofsky, E. W. J. Chem. Phys. 1983, 79, 388. Jorgensen, W. L.; Severance, D. L. J. Chem. Phys. 1993, 99,4233. Markovich, G.; Perera, L.; Berkowitz, M. L.; Cheshnovsky, O. J. Chem. Phys. 1996, 105, 2675. Truong, T. N.; Stefanovich, E. V. Chem. Phys. 1997, 218, 31.
    • (1997) Chem. Phys. , vol.218 , pp. 31
    • Truong, T.N.1    Stefanovich, E.V.2
  • 15
    • 36549102444 scopus 로고
    • (b) See, e.g., Sung, S.-S.; Jordan, P. C. J. Chem. Phys. 1986, 85, 4045. Lin, S.; Jordan, P. C. J. Chem. Phys. 1988, 89, 7492.
    • (1986) J. Chem. Phys. , vol.85 , pp. 4045
    • Sung, S.-S.1    Jordan, P.C.2
  • 16
    • 0001372109 scopus 로고
    • (b) See, e.g., Sung, S.-S.; Jordan, P. C. J. Chem. Phys. 1986, 85, 4045. Lin, S.; Jordan, P. C. J. Chem. Phys. 1988, 89, 7492.
    • (1988) J. Chem. Phys. , vol.89 , pp. 7492
    • Lin, S.1    Jordan, P.C.2
  • 17
    • 22244482712 scopus 로고
    • (c) Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1991, 95, 1954, 4236. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1993, 99, 4236. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1993, 99, 4222. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950.
    • (1991) J. Chem. Phys. , vol.95 , pp. 1954
    • Perera, L.1    Berkowitz, M.L.2
  • 18
    • 33748570423 scopus 로고
    • (c) Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1991, 95, 1954, 4236. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1993, 99, 4236. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1993, 99, 4222. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950.
    • (1993) J. Chem. Phys. , vol.99 , pp. 4236
    • Perera, L.1    Berkowitz, M.L.2
  • 19
    • 33748570423 scopus 로고
    • (c) Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1991, 95, 1954, 4236. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1993, 99, 4236. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1993, 99, 4222. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950.
    • (1993) J. Chem. Phys. , vol.99 , pp. 4222
    • Perera, L.1    Berkowitz, M.L.2
  • 20
    • 33646409342 scopus 로고
    • (c) Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1991, 95, 1954, 4236. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1993, 99, 4236. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1993, 99, 4222. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950.
    • (1993) J. Chem. Phys. , vol.99 , pp. 2972
    • Dang, L.X.1    Garrett, B.C.2
  • 21
    • 36449003438 scopus 로고
    • (c) Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1991, 95, 1954, 4236. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1993, 99, 4236. Perera, L.; Berkowitz, M. L. J. Chem. Phys. 1993, 99, 4222. Dang, L. X.; Garrett, B. C. J. Chem. Phys. 1993, 99, 2972. Dang, L. X.; Smith, D. E. J. Chem. Phys. 1993, 99, 6950.
    • (1993) J. Chem. Phys. , vol.99 , pp. 6950
    • Dang, L.X.1    Smith, D.E.2
  • 23
    • 0342581370 scopus 로고
    • See, e.g., Kistenmacher, H.; Popkie, H.; Clementi, E. J. Chem. Phys. 1974, 61, 799. Combariza, J. E.; Kestner, N. R.; Jortner, J. Chem. Phys. Lett. 1993, 203, 423. Combariza, J. E.; Kestner, N. R.; Jortner, J. J. Chem. Phys. 1994, 100, 2851.
    • (1974) J. Chem. Phys. , vol.61 , pp. 799
    • Kistenmacher, H.1    Popkie, H.2    Clementi, E.3
  • 24
    • 0000014236 scopus 로고
    • See, e.g., Kistenmacher, H.; Popkie, H.; Clementi, E. J. Chem. Phys. 1974, 61, 799. Combariza, J. E.; Kestner, N. R.; Jortner, J. Chem. Phys. Lett. 1993, 203, 423. Combariza, J. E.; Kestner, N. R.; Jortner, J. J. Chem. Phys. 1994, 100, 2851.
    • (1993) Chem. Phys. Lett. , vol.203 , pp. 423
    • Combariza, J.E.1    Kestner, N.R.2    Jortner, J.3
  • 25
    • 6244249374 scopus 로고
    • See, e.g., Kistenmacher, H.; Popkie, H.; Clementi, E. J. Chem. Phys. 1974, 61, 799. Combariza, J. E.; Kestner, N. R.; Jortner, J. Chem. Phys. Lett. 1993, 203, 423. Combariza, J. E.; Kestner, N. R.; Jortner, J. J. Chem. Phys. 1994, 100, 2851.
    • (1994) J. Chem. Phys. , vol.100 , pp. 2851
    • Combariza, J.E.1    Kestner, N.R.2    Jortner, J.3
  • 29
    • 0030602746 scopus 로고    scopus 로고
    • (b) Cabarcos, O. C.; Lisy, J. M. Chem. Phys. Lett. 1996, 257, 265. Weinheimer, C. J.; Lisy, J. M. J. Phys. Chem. 1996, 100, 15305.
    • (1996) Chem. Phys. Lett. , vol.257 , pp. 265
    • Cabarcos, O.C.1    Lisy, J.M.2
  • 30
    • 11644253733 scopus 로고    scopus 로고
    • (b) Cabarcos, O. C.; Lisy, J. M. Chem. Phys. Lett. 1996, 257, 265. Weinheimer, C. J.; Lisy, J. M. J. Phys. Chem. 1996, 100, 15305.
    • (1996) J. Phys. Chem. , vol.100 , pp. 15305
    • Weinheimer, C.J.1    Lisy, J.M.2
  • 34
    • 0001106901 scopus 로고
    • Tsai, C. J.; Jordan, K. D. Chem. Phys. Lett. 1993, 213, 181. Jensen, J. O.; Krishnan, P. N.; Burke, L. A. Chem. Phys. Lett. 1996, 260, 499.
    • (1993) Chem. Phys. Lett. , vol.213 , pp. 181
    • Tsai, C.J.1    Jordan, K.D.2
  • 36
    • 4243126998 scopus 로고    scopus 로고
    • See, e.g., Liu, K.; Cruzan, J. D.; Saykally, R. J. Science 1996, 271, 929. Liu, K.; Brown, M. G.; Carter, C.; Saykally, R. J.; Gregory, J. K.; Clary, D. C. Nature 1996, 381, 501, and reference therein.
    • (1996) Science , vol.271 , pp. 929
    • Liu, K.1    Cruzan, J.D.2    Saykally, R.J.3
  • 39
    • 0000947193 scopus 로고    scopus 로고
    • Dang, L. X.; Chang, T.-M. J. Chem. Phys. 1997, 106, 8149. Dang, L. X. J. Chem. Phys. 1999, 110, 1526.
    • (1999) J. Chem. Phys. , vol.110 , pp. 1526
    • Dang, L.X.1
  • 40
    • 0011146725 scopus 로고
    • Wales, D. J.; Ohmine, I. J. Chem. Phys. 1993, 98, 7245. Wales, D. J.; Ohmine, I. J. Chem. Phys. 1993, 98, 7257. Wales, D. J.; Walsh, T. R. J. Chem. Phys. 1996, 105, 6957. Wales, D. J.; Walsh, T. R. J. Chem. Phys. 1997, 106, 7193. Baba, A.; Hirata, Y.; Saito, S.; Ohmine, I.; Wales, D. J. J. Chem. Phys. 1997, 106, 3329.
    • (1993) J. Chem. Phys. , vol.98 , pp. 7245
    • Wales, D.J.1    Ohmine, I.2
  • 41
    • 0000317328 scopus 로고
    • Wales, D. J.; Ohmine, I. J. Chem. Phys. 1993, 98, 7245. Wales, D. J.; Ohmine, I. J. Chem. Phys. 1993, 98, 7257. Wales, D. J.; Walsh, T. R. J. Chem. Phys. 1996, 105, 6957. Wales, D. J.; Walsh, T. R. J. Chem. Phys. 1997, 106, 7193. Baba, A.; Hirata, Y.; Saito, S.; Ohmine, I.; Wales, D. J. J. Chem. Phys. 1997, 106, 3329.
    • (1993) J. Chem. Phys. , vol.98 , pp. 7257
    • Wales, D.J.1    Ohmine, I.2
  • 42
    • 25044446631 scopus 로고    scopus 로고
    • Wales, D. J.; Ohmine, I. J. Chem. Phys. 1993, 98, 7245. Wales, D. J.; Ohmine, I. J. Chem. Phys. 1993, 98, 7257. Wales, D. J.; Walsh, T. R. J. Chem. Phys. 1996, 105, 6957. Wales, D. J.; Walsh, T. R. J. Chem. Phys. 1997, 106, 7193. Baba, A.; Hirata, Y.; Saito, S.; Ohmine, I.; Wales, D. J. J. Chem. Phys. 1997, 106, 3329.
    • (1996) J. Chem. Phys. , vol.105 , pp. 6957
    • Wales, D.J.1    Walsh, T.R.2
  • 43
    • 0343732731 scopus 로고    scopus 로고
    • Wales, D. J.; Ohmine, I. J. Chem. Phys. 1993, 98, 7245. Wales, D. J.; Ohmine, I. J. Chem. Phys. 1993, 98, 7257. Wales, D. J.; Walsh, T. R. J. Chem. Phys. 1996, 105, 6957. Wales, D. J.; Walsh, T. R. J. Chem. Phys. 1997, 106, 7193. Baba, A.; Hirata, Y.; Saito, S.; Ohmine, I.; Wales, D. J. J. Chem. Phys. 1997, 106, 3329.
    • (1997) J. Chem. Phys. , vol.106 , pp. 7193
    • Wales, D.J.1    Walsh, T.R.2
  • 44
    • 0000030392 scopus 로고    scopus 로고
    • Wales, D. J.; Ohmine, I. J. Chem. Phys. 1993, 98, 7245. Wales, D. J.; Ohmine, I. J. Chem. Phys. 1993, 98, 7257. Wales, D. J.; Walsh, T. R. J. Chem. Phys. 1996, 105, 6957. Wales, D. J.; Walsh, T. R. J. Chem. Phys. 1997, 106, 7193. Baba, A.; Hirata, Y.; Saito, S.; Ohmine, I.; Wales, D. J. J. Chem. Phys. 1997, 106, 3329.
    • (1997) J. Chem. Phys. , vol.106 , pp. 3329
    • Baba, A.1    Hirata, Y.2    Saito, S.3    Ohmine, I.4    Wales, D.J.5
  • 47
    • 36449009435 scopus 로고
    • Laria, D.; Fernandez-Prini, R. Chem. Phys. Lett. 1993, 205, 260. J. Chem. Phys. 1995, 102, 7664.
    • (1995) J. Chem. Phys. , vol.102 , pp. 7664
  • 53
    • 0004236209 scopus 로고
    • Oxford University Press; London
    • Mason, B. J. The Physics of Clouds, 2nd ed.; Oxford University Press; London, 1971. Byers, H. R. Elements of Cloud Physics: University of Chicago Press: Chicago & London, 1965.
    • (1971) The Physics of Clouds, 2nd Ed.
    • Mason, B.J.1
  • 54
    • 0004696394 scopus 로고
    • University of Chicago Press: Chicago & London
    • Mason, B. J. The Physics of Clouds, 2nd ed.; Oxford University Press; London, 1971. Byers, H. R. Elements of Cloud Physics: University of Chicago Press: Chicago & London, 1965.
    • (1965) Elements of Cloud Physics
    • Byers, H.R.1
  • 57
    • 11744319622 scopus 로고    scopus 로고
    • Beichert, P.; Finlayson-Pitts, B. J. J. Phys. Chem. 1996, 100, 15218. Langer, S.; Pemberton, R. S.; Finlayson-Pitls, B. J. J. Phys. Chem. A 1997, 101, 1277. DeHaan, D. O.; Finlayson-Pitts, B. J. J. Phys. Chem. A 1997, 101, 9993. Oum, K. W.; Lakin, M. J.; DeHaan, D. O.; Brauer, T.; Finlayson-Pitts, B. J. Science 1998, 279, 74.
    • (1996) J. Phys. Chem. , vol.100 , pp. 15218
    • Beichert, P.1    Finlayson-Pitts, B.J.2
  • 58
    • 0031076205 scopus 로고    scopus 로고
    • Beichert, P.; Finlayson-Pitts, B. J. J. Phys. Chem. 1996, 100, 15218. Langer, S.; Pemberton, R. S.; Finlayson-Pitls, B. J. J. Phys. Chem. A 1997, 101, 1277. DeHaan, D. O.; Finlayson-Pitts, B. J. J. Phys. Chem. A 1997, 101, 9993. Oum, K. W.; Lakin, M. J.; DeHaan, D. O.; Brauer, T.; Finlayson-Pitts, B. J. Science 1998, 279, 74.
    • (1997) J. Phys. Chem. A , vol.101 , pp. 1277
    • Langer, S.1    Pemberton, R.S.2    Finlayson-Pitls, B.J.3
  • 59
    • 0031378299 scopus 로고    scopus 로고
    • Beichert, P.; Finlayson-Pitts, B. J. J. Phys. Chem. 1996, 100, 15218. Langer, S.; Pemberton, R. S.; Finlayson-Pitls, B. J. J. Phys. Chem. A 1997, 101, 1277. DeHaan, D. O.; Finlayson-Pitts, B. J. J. Phys. Chem. A 1997, 101, 9993. Oum, K. W.; Lakin, M. J.; DeHaan, D. O.; Brauer, T.; Finlayson-Pitts, B. J. Science 1998, 279, 74.
    • (1997) J. Phys. Chem. A , vol.101 , pp. 9993
    • DeHaan, D.O.1    Finlayson-Pitts, B.J.2
  • 60
    • 0032472197 scopus 로고    scopus 로고
    • Beichert, P.; Finlayson-Pitts, B. J. J. Phys. Chem. 1996, 100, 15218. Langer, S.; Pemberton, R. S.; Finlayson-Pitls, B. J. J. Phys. Chem. A 1997, 101, 1277. DeHaan, D. O.; Finlayson-Pitts, B. J. J. Phys. Chem. A 1997, 101, 9993. Oum, K. W.; Lakin, M. J.; DeHaan, D. O.; Brauer, T.; Finlayson-Pitts, B. J. Science 1998, 279, 74.
    • (1998) Science , vol.279 , pp. 74
    • Oum, K.W.1    Lakin, M.J.2    Dehaan, D.O.3    Brauer, T.4    Finlayson-Pitts, B.J.5
  • 61
    • 33751157926 scopus 로고
    • George, C.; Ponche, J. L.; Mirabel, P.; Behnke, W.; Scheer, V.; Zetzsch, C. J. Phys. Chem. 1994, 98, 8780. George, C.; Behnke, W.; Scheer, V.; Zetzsch, C.; Magi, L.; Ponche, J. L.; Mirabel, P. Geophys. Res. Lett. 1995, 22, 1505. Schweitzer, F.; Magi, L.; Mirabel, P.; George, C. J. Phys. Chem. A 1998, 102, 593.
    • (1994) J. Phys. Chem. , vol.98 , pp. 8780
    • George, C.1    Ponche, J.L.2    Mirabel, P.3    Behnke, W.4    Scheer, V.5    Zetzsch, C.6
  • 63
    • 0031701894 scopus 로고    scopus 로고
    • George, C.; Ponche, J. L.; Mirabel, P.; Behnke, W.; Scheer, V.; Zetzsch, C. J. Phys. Chem. 1994, 98, 8780. George, C.; Behnke, W.; Scheer, V.; Zetzsch, C.; Magi, L.; Ponche, J. L.; Mirabel, P. Geophys. Res. Lett. 1995, 22, 1505. Schweitzer, F.; Magi, L.; Mirabel, P.; George, C. J. Phys. Chem. A 1998, 102, 593.
    • (1998) J. Phys. Chem. A , vol.102 , pp. 593
    • Schweitzer, F.1    Magi, L.2    Mirabel, P.3    George, C.4
  • 64
    • 0007282976 scopus 로고
    • Rosker, M. J.; Rose, T. S.; Zewail, A. H. Chem. Phys. Lett. 1988, 146, 175. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1988, 88, 6672. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1989, 91, 7415. Zewail, A. H. J. Chem. Soc., Faraday Trans. 1989, 85, 1221. Cong, P.; Mohktari, A.; Zewail, A. H. Chem. Phys. Lett. 1990, 172, 109. Mohktari, A.; Cong, P.; Herek, J. L.; Zewail, A. H. Nature 1990, 348, 225. Zewail, A. H. Faraday Trans. Chem. Soc. 1991, 91, 207. Zewail, A. H. Femtochemistry - Ultrafast Dynamics of the Chemical Bond; World Scientific: Singapore, 1994. Zewail, A. H. In Femtosecond Chemistry; Manz J.; Wöste L., Eds.; VCH: New York, 1994; Vol. 1, p 15. Cong, P.; Roberts, G.; Herek, J. L.; Mohktari, A.; Zewail, A. H. J. Chem. Phys. 1996, 100, 7832.
    • (1988) Chem. Phys. Lett. , vol.146 , pp. 175
    • Rosker, M.J.1    Rose, T.S.2    Zewail, A.H.3
  • 65
    • 36549093382 scopus 로고
    • Rosker, M. J.; Rose, T. S.; Zewail, A. H. Chem. Phys. Lett. 1988, 146, 175. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1988, 88, 6672. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1989, 91, 7415. Zewail, A. H. J. Chem. Soc., Faraday Trans. 1989, 85, 1221. Cong, P.; Mohktari, A.; Zewail, A. H. Chem. Phys. Lett. 1990, 172, 109. Mohktari, A.; Cong, P.; Herek, J. L.; Zewail, A. H. Nature 1990, 348, 225. Zewail, A. H. Faraday Trans. Chem. Soc. 1991, 91, 207. Zewail, A. H. Femtochemistry - Ultrafast Dynamics of the Chemical Bond; World Scientific: Singapore, 1994. Zewail, A. H. In Femtosecond Chemistry; Manz J.; Wöste L., Eds.; VCH: New York, 1994; Vol. 1, p 15. Cong, P.; Roberts, G.; Herek, J. L.; Mohktari, A.; Zewail, A. H. J. Chem. Phys. 1996, 100, 7832.
    • (1988) J. Chem. Phys. , vol.88 , pp. 6672
    • Rose, T.S.1    Rosker, M.J.2    Zewail, A.H.3
  • 66
    • 0000310740 scopus 로고
    • Rosker, M. J.; Rose, T. S.; Zewail, A. H. Chem. Phys. Lett. 1988, 146, 175. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1988, 88, 6672. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1989, 91, 7415. Zewail, A. H. J. Chem. Soc., Faraday Trans. 1989, 85, 1221. Cong, P.; Mohktari, A.; Zewail, A. H. Chem. Phys. Lett. 1990, 172, 109. Mohktari, A.; Cong, P.; Herek, J. L.; Zewail, A. H. Nature 1990, 348, 225. Zewail, A. H. Faraday Trans. Chem. Soc. 1991, 91, 207. Zewail, A. H. Femtochemistry - Ultrafast Dynamics of the Chemical Bond; World Scientific: Singapore, 1994. Zewail, A. H. In Femtosecond Chemistry; Manz J.; Wöste L., Eds.; VCH: New York, 1994; Vol. 1, p 15. Cong, P.; Roberts, G.; Herek, J. L.; Mohktari, A.; Zewail, A. H. J. Chem. Phys. 1996, 100, 7832.
    • (1989) J. Chem. Phys. , vol.91 , pp. 7415
    • Rose, T.S.1    Rosker, M.J.2    Zewail, A.H.3
  • 67
    • 37049080107 scopus 로고
    • Rosker, M. J.; Rose, T. S.; Zewail, A. H. Chem. Phys. Lett. 1988, 146, 175. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1988, 88, 6672. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1989, 91, 7415. Zewail, A. H. J. Chem. Soc., Faraday Trans. 1989, 85, 1221. Cong, P.; Mohktari, A.; Zewail, A. H. Chem. Phys. Lett. 1990, 172, 109. Mohktari, A.; Cong, P.; Herek, J. L.; Zewail, A. H. Nature 1990, 348, 225. Zewail, A. H. Faraday Trans. Chem. Soc. 1991, 91, 207. Zewail, A. H. Femtochemistry - Ultrafast Dynamics of the Chemical Bond; World Scientific: Singapore, 1994. Zewail, A. H. In Femtosecond Chemistry; Manz J.; Wöste L., Eds.; VCH: New York, 1994; Vol. 1, p 15. Cong, P.; Roberts, G.; Herek, J. L.; Mohktari, A.; Zewail, A. H. J. Chem. Phys. 1996, 100, 7832.
    • (1989) J. Chem. Soc., Faraday Trans. , vol.85 , pp. 1221
    • Zewail, A.H.1
  • 68
    • 0000918249 scopus 로고
    • Rosker, M. J.; Rose, T. S.; Zewail, A. H. Chem. Phys. Lett. 1988, 146, 175. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1988, 88, 6672. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1989, 91, 7415. Zewail, A. H. J. Chem. Soc., Faraday Trans. 1989, 85, 1221. Cong, P.; Mohktari, A.; Zewail, A. H. Chem. Phys. Lett. 1990, 172, 109. Mohktari, A.; Cong, P.; Herek, J. L.; Zewail, A. H. Nature 1990, 348, 225. Zewail, A. H. Faraday Trans. Chem. Soc. 1991, 91, 207. Zewail, A. H. Femtochemistry - Ultrafast Dynamics of the Chemical Bond; World Scientific: Singapore, 1994. Zewail, A. H. In Femtosecond Chemistry; Manz J.; Wöste L., Eds.; VCH: New York, 1994; Vol. 1, p 15. Cong, P.; Roberts, G.; Herek, J. L.; Mohktari, A.; Zewail, A. H. J. Chem. Phys. 1996, 100, 7832.
    • (1990) Chem. Phys. Lett. , vol.172 , pp. 109
    • Cong, P.1    Mohktari, A.2    Zewail, A.H.3
  • 69
    • 0001587101 scopus 로고
    • Rosker, M. J.; Rose, T. S.; Zewail, A. H. Chem. Phys. Lett. 1988, 146, 175. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1988, 88, 6672. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1989, 91, 7415. Zewail, A. H. J. Chem. Soc., Faraday Trans. 1989, 85, 1221. Cong, P.; Mohktari, A.; Zewail, A. H. Chem. Phys. Lett. 1990, 172, 109. Mohktari, A.; Cong, P.; Herek, J. L.; Zewail, A. H. Nature 1990, 348, 225. Zewail, A. H. Faraday Trans. Chem. Soc. 1991, 91, 207. Zewail, A. H. Femtochemistry - Ultrafast Dynamics of the Chemical Bond; World Scientific: Singapore, 1994. Zewail, A. H. In Femtosecond Chemistry; Manz J.; Wöste L., Eds.; VCH: New York, 1994; Vol. 1, p 15. Cong, P.; Roberts, G.; Herek, J. L.; Mohktari, A.; Zewail, A. H. J. Chem. Phys. 1996, 100, 7832.
    • (1990) Nature , vol.348 , pp. 225
    • Mohktari, A.1    Cong, P.2    Herek, J.L.3    Zewail, A.H.4
  • 70
    • 0042086771 scopus 로고
    • Rosker, M. J.; Rose, T. S.; Zewail, A. H. Chem. Phys. Lett. 1988, 146, 175. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1988, 88, 6672. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1989, 91, 7415. Zewail, A. H. J. Chem. Soc., Faraday Trans. 1989, 85, 1221. Cong, P.; Mohktari, A.; Zewail, A. H. Chem. Phys. Lett. 1990, 172, 109. Mohktari, A.; Cong, P.; Herek, J. L.; Zewail, A. H. Nature 1990, 348, 225. Zewail, A. H. Faraday Trans. Chem. Soc. 1991, 91, 207. Zewail, A. H. Femtochemistry - Ultrafast Dynamics of the Chemical Bond; World Scientific: Singapore, 1994. Zewail, A. H. In Femtosecond Chemistry; Manz J.; Wöste L., Eds.; VCH: New York, 1994; Vol. 1, p 15. Cong, P.; Roberts, G.; Herek, J. L.; Mohktari, A.; Zewail, A. H. J. Chem. Phys. 1996, 100, 7832.
    • (1991) Faraday Trans. Chem. Soc. , vol.91 , pp. 207
    • Zewail, A.H.1
  • 71
    • 0003676779 scopus 로고
    • World Scientific: Singapore
    • Rosker, M. J.; Rose, T. S.; Zewail, A. H. Chem. Phys. Lett. 1988, 146, 175. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1988, 88, 6672. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1989, 91, 7415. Zewail, A. H. J. Chem. Soc., Faraday Trans. 1989, 85, 1221. Cong, P.; Mohktari, A.; Zewail, A. H. Chem. Phys. Lett. 1990, 172, 109. Mohktari, A.; Cong, P.; Herek, J. L.; Zewail, A. H. Nature 1990, 348, 225. Zewail, A. H. Faraday Trans. Chem. Soc. 1991, 91, 207. Zewail, A. H. Femtochemistry - Ultrafast Dynamics of the Chemical Bond; World Scientific: Singapore, 1994. Zewail, A. H. In Femtosecond Chemistry; Manz J.; Wöste L., Eds.; VCH: New York, 1994; Vol. 1, p 15. Cong, P.; Roberts, G.; Herek, J. L.; Mohktari, A.; Zewail, A. H. J. Chem. Phys. 1996, 100, 7832.
    • (1994) Femtochemistry - Ultrafast Dynamics of the Chemical Bond
    • Zewail, A.H.1
  • 72
    • 0003073224 scopus 로고
    • Manz J.; Wöste L., Eds.; VCH: New York
    • Rosker, M. J.; Rose, T. S.; Zewail, A. H. Chem. Phys. Lett. 1988, 146, 175. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1988, 88, 6672. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1989, 91, 7415. Zewail, A. H. J. Chem. Soc., Faraday Trans. 1989, 85, 1221. Cong, P.; Mohktari, A.; Zewail, A. H. Chem. Phys. Lett. 1990, 172, 109. Mohktari, A.; Cong, P.; Herek, J. L.; Zewail, A. H. Nature 1990, 348, 225. Zewail, A. H. Faraday Trans. Chem. Soc. 1991, 91, 207. Zewail, A. H. Femtochemistry - Ultrafast Dynamics of the Chemical Bond; World Scientific: Singapore, 1994. Zewail, A. H. In Femtosecond Chemistry; Manz J.; Wöste L., Eds.; VCH: New York, 1994; Vol. 1, p 15. Cong, P.; Roberts, G.; Herek, J. L.; Mohktari, A.; Zewail, A. H. J. Chem. Phys. 1996, 100, 7832.
    • (1994) Femtosecond Chemistry , vol.1 , pp. 15
    • Zewail, A.H.1
  • 73
    • 0000662691 scopus 로고    scopus 로고
    • Rosker, M. J.; Rose, T. S.; Zewail, A. H. Chem. Phys. Lett. 1988, 146, 175. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1988, 88, 6672. Rose, T. S.; Rosker, M. J.; Zewail, A. H. J. Chem. Phys. 1989, 91, 7415. Zewail, A. H. J. Chem. Soc., Faraday Trans. 1989, 85, 1221. Cong, P.; Mohktari, A.; Zewail, A. H. Chem. Phys. Lett. 1990, 172, 109. Mohktari, A.; Cong, P.; Herek, J. L.; Zewail, A. H. Nature 1990, 348, 225. Zewail, A. H. Faraday Trans. Chem. Soc. 1991, 91, 207. Zewail, A. H. Femtochemistry - Ultrafast Dynamics of the Chemical Bond; World Scientific: Singapore, 1994. Zewail, A. H. In Femtosecond Chemistry; Manz J.; Wöste L., Eds.; VCH: New York, 1994; Vol. 1, p 15. Cong, P.; Roberts, G.; Herek, J. L.; Mohktari, A.; Zewail, A. H. J. Chem. Phys. 1996, 100, 7832.
    • (1996) J. Chem. Phys. , vol.100 , pp. 7832
    • Cong, P.1    Roberts, G.2    Herek, J.L.3    Mohktari, A.4    Zewail, A.H.5
  • 74
    • 0042087600 scopus 로고
    • Prigogine, I., Rice, S. A., Eds.; Wiley: New York
    • Lin, S. H.; Fain, B.; Hamer, N. In Advances in Chemical Physics; Prigogine, I., Rice, S. A., Eds.; Wiley: New York, 1990; Vol. 74; p 123.
    • (1990) Advances in Chemical Physics , vol.74 , pp. 123
    • Lin, S.H.1    Fain, B.2    Hamer, N.3
  • 79
    • 36549091278 scopus 로고
    • Engel, V.; Metiu, H.; Almeida, R.; Marcus, R. A.; Zewail, A. H. Chem. Phys. Lett. 1988, 152, 1. Engel, V.; Metiu, H. J. Chem. Phys. 1989, 90, 6116.
    • (1989) J. Chem. Phys. , vol.90 , pp. 6116
    • Engel, V.1    Metiu, H.2
  • 80
    • 0002431014 scopus 로고
    • Engel, V.; Metiu, H. Chem. Phys. Lett. 1989, 151, 77. Braun, M.; Meier, C.; Engel, V. J. Chem. Phys. 1996, 105, 530.
    • (1989) Chem. Phys. Lett. , vol.151 , pp. 77
    • Engel, V.1    Metiu, H.2
  • 83
    • 4444335700 scopus 로고    scopus 로고
    • Martinez, T. J.; Levine, R. D. Chem. Phys. Lett. 1996, 259, 252. Martinez, T. J.; Levine, R. D. J. Chem. Phys. 1996, 105, 6334.
    • (1996) J. Chem. Phys. , vol.105 , pp. 6334
    • Martinez, T.J.1    Levine, R.D.2
  • 93
    • 0004166589 scopus 로고
    • McGraw-Hill: New York
    • See, e.g., Hill, T. L. Statistical Mechanics. Principles and Selected Applications, McGraw-Hill: New York. 1956; p. 193. Davidson, N. Statistical Mechanics, McGraw-Hill: New York, 1962; p. 481.
    • (1962) Statistical Mechanics , pp. 481
    • Davidson, N.1
  • 95
    • 0001213702 scopus 로고
    • Guardia, E.; Rey, R.; Padró J. A. Chem. Phys. 1991, 155, 187. Dang, L. X. J. Chem. Phys. 1992, 97, 1919.
    • (1992) J. Chem. Phys. , vol.97 , pp. 1919
    • Dang, L.X.1
  • 96
    • 0001060458 scopus 로고
    • Valleau, J.; Patey, G. N. J. Chem. Phys. 1975, 63, 2334. Berkowitz, M.; Karim, O. A.; McCammon, J. A.; Rossky, P. J. Chem. Phys. Lett. 1984, 105, 577. Karim, O. A.; McCammon, J. A. J. Am. Chem. Soc. 1986, 108, 1762. Dang, L. X.; Pettit, B. M. J. Chem. Phys. 1987, 86, 6560. Buckner, J. K.; Jorgensen, W. L.; Houston, S. E.; Rossky, P. J. J. Am. Chem. Soc. 1987, 109, 1981. Buckner, J. K.; Jorgensen, W. L. J. Am. Chem. Soc. 1989. 111, 2507. Guàrdia, E.; Rey, R.; Padró, J. A. J. Chem. Phys. 1991, 95, 2823. Zhu, S.-B.; Robinson, G. W. J. Chem. Phys. 1992, 97, 4336.
    • (1975) J. Chem. Phys. , vol.63 , pp. 2334
    • Valleau, J.1    Patey, G.N.2
  • 97
    • 0000307978 scopus 로고
    • Valleau, J.; Patey, G. N. J. Chem. Phys. 1975, 63, 2334. Berkowitz, M.; Karim, O. A.; McCammon, J. A.; Rossky, P. J. Chem. Phys. Lett. 1984, 105, 577. Karim, O. A.; McCammon, J. A. J. Am. Chem. Soc. 1986, 108, 1762. Dang, L. X.; Pettit, B. M. J. Chem. Phys. 1987, 86, 6560. Buckner, J. K.; Jorgensen, W. L.; Houston, S. E.; Rossky, P. J. J. Am. Chem. Soc. 1987, 109, 1981. Buckner, J. K.; Jorgensen, W. L. J. Am. Chem. Soc. 1989. 111, 2507. Guàrdia, E.; Rey, R.; Padró, J. A. J. Chem. Phys. 1991, 95, 2823. Zhu, S.-B.; Robinson, G. W. J. Chem. Phys. 1992, 97, 4336.
    • (1984) Chem. Phys. Lett. , vol.105 , pp. 577
    • Berkowitz, M.1    Karim, O.A.2    McCammon, J.A.3    Rossky, P.J.4
  • 98
    • 33845373852 scopus 로고
    • Valleau, J.; Patey, G. N. J. Chem. Phys. 1975, 63, 2334. Berkowitz, M.; Karim, O. A.; McCammon, J. A.; Rossky, P. J. Chem. Phys. Lett. 1984, 105, 577. Karim, O. A.; McCammon, J. A. J. Am. Chem. Soc. 1986, 108, 1762. Dang, L. X.; Pettit, B. M. J. Chem. Phys. 1987, 86, 6560. Buckner, J. K.; Jorgensen, W. L.; Houston, S. E.; Rossky, P. J. J. Am. Chem. Soc. 1987, 109, 1981. Buckner, J. K.; Jorgensen, W. L. J. Am. Chem. Soc. 1989. 111, 2507. Guàrdia, E.; Rey, R.; Padró, J. A. J. Chem. Phys. 1991, 95, 2823. Zhu, S.-B.; Robinson, G. W. J. Chem. Phys. 1992, 97, 4336.
    • (1986) J. Am. Chem. Soc. , vol.108 , pp. 1762
    • Karim, O.A.1    McCammon, J.A.2
  • 99
    • 36549096494 scopus 로고
    • Valleau, J.; Patey, G. N. J. Chem. Phys. 1975, 63, 2334. Berkowitz, M.; Karim, O. A.; McCammon, J. A.; Rossky, P. J. Chem. Phys. Lett. 1984, 105, 577. Karim, O. A.; McCammon, J. A. J. Am. Chem. Soc. 1986, 108, 1762. Dang, L. X.; Pettit, B. M. J. Chem. Phys. 1987, 86, 6560. Buckner, J. K.; Jorgensen, W. L.; Houston, S. E.; Rossky, P. J. J. Am. Chem. Soc. 1987, 109, 1981. Buckner, J. K.; Jorgensen, W. L. J. Am. Chem. Soc. 1989. 111, 2507. Guàrdia, E.; Rey, R.; Padró, J. A. J. Chem. Phys. 1991, 95, 2823. Zhu, S.-B.; Robinson, G. W. J. Chem. Phys. 1992, 97, 4336.
    • (1987) J. Chem. Phys. , vol.86 , pp. 6560
    • Dang, L.X.1    Pettit, B.M.2
  • 100
    • 0042587829 scopus 로고
    • Valleau, J.; Patey, G. N. J. Chem. Phys. 1975, 63, 2334. Berkowitz, M.; Karim, O. A.; McCammon, J. A.; Rossky, P. J. Chem. Phys. Lett. 1984, 105, 577. Karim, O. A.; McCammon, J. A. J. Am. Chem. Soc. 1986, 108, 1762. Dang, L. X.; Pettit, B. M. J. Chem. Phys. 1987, 86, 6560. Buckner, J. K.; Jorgensen, W. L.; Houston, S. E.; Rossky, P. J. J. Am. Chem. Soc. 1987, 109, 1981. Buckner, J. K.; Jorgensen, W. L. J. Am. Chem. Soc. 1989. 111, 2507. Guàrdia, E.; Rey, R.; Padró, J. A. J. Chem. Phys. 1991, 95, 2823. Zhu, S.-B.; Robinson, G. W. J. Chem. Phys. 1992, 97, 4336.
    • (1987) J. Am. Chem. Soc. , vol.109 , pp. 1981
    • Buckner, J.K.1    Jorgensen, W.L.2    Houston, S.E.3    Rossky, P.J.4
  • 101
    • 33845183124 scopus 로고
    • Valleau, J.; Patey, G. N. J. Chem. Phys. 1975, 63, 2334. Berkowitz, M.; Karim, O. A.; McCammon, J. A.; Rossky, P. J. Chem. Phys. Lett. 1984, 105, 577. Karim, O. A.; McCammon, J. A. J. Am. Chem. Soc. 1986, 108, 1762. Dang, L. X.; Pettit, B. M. J. Chem. Phys. 1987, 86, 6560. Buckner, J. K.; Jorgensen, W. L.; Houston, S. E.; Rossky, P. J. J. Am. Chem. Soc. 1987, 109, 1981. Buckner, J. K.; Jorgensen, W. L. J. Am. Chem. Soc. 1989. 111, 2507. Guàrdia, E.; Rey, R.; Padró, J. A. J. Chem. Phys. 1991, 95, 2823. Zhu, S.-B.; Robinson, G. W. J. Chem. Phys. 1992, 97, 4336.
    • (1989) J. Am. Chem. Soc. , vol.111 , pp. 2507
    • Buckner, J.K.1    Jorgensen, W.L.2
  • 102
    • 36449000305 scopus 로고
    • Valleau, J.; Patey, G. N. J. Chem. Phys. 1975, 63, 2334. Berkowitz, M.; Karim, O. A.; McCammon, J. A.; Rossky, P. J. Chem. Phys. Lett. 1984, 105, 577. Karim, O. A.; McCammon, J. A. J. Am. Chem. Soc. 1986, 108, 1762. Dang, L. X.; Pettit, B. M. J. Chem. Phys. 1987, 86, 6560. Buckner, J. K.; Jorgensen, W. L.; Houston, S. E.; Rossky, P. J. J. Am. Chem. Soc. 1987, 109, 1981. Buckner, J. K.; Jorgensen, W. L. J. Am. Chem. Soc. 1989. 111, 2507. Guàrdia, E.; Rey, R.; Padró, J. A. J. Chem. Phys. 1991, 95, 2823. Zhu, S.-B.; Robinson, G. W. J. Chem. Phys. 1992, 97, 4336.
    • (1991) J. Chem. Phys. , vol.95 , pp. 2823
    • Guàrdia, E.1    Rey, R.2    Padró, J.A.3
  • 103
    • 36449009737 scopus 로고
    • Valleau, J.; Patey, G. N. J. Chem. Phys. 1975, 63, 2334. Berkowitz, M.; Karim, O. A.; McCammon, J. A.; Rossky, P. J. Chem. Phys. Lett. 1984, 105, 577. Karim, O. A.; McCammon, J. A. J. Am. Chem. Soc. 1986, 108, 1762. Dang, L. X.; Pettit, B. M. J. Chem. Phys. 1987, 86, 6560. Buckner, J. K.; Jorgensen, W. L.; Houston, S. E.; Rossky, P. J. J. Am. Chem. Soc. 1987, 109, 1981. Buckner, J. K.; Jorgensen, W. L. J. Am. Chem. Soc. 1989. 111, 2507. Guàrdia, E.; Rey, R.; Padró, J. A. J. Chem. Phys. 1991, 95, 2823. Zhu, S.-B.; Robinson, G. W. J. Chem. Phys. 1992, 97, 4336.
    • (1992) J. Chem. Phys. , vol.97 , pp. 4336
    • Zhu, S.-B.1    Robinson, G.W.2
  • 109
    • 0003996643 scopus 로고    scopus 로고
    • Wiley: New York
    • It should be pointed out that computer simulations are performed for isolated clusters, whereas actual experimental measurements involve clusters of various size in thermodynamic equilibrium with the solvent vapor. The proper definition of the physical cluster has been a long-standing issue in investigations of nucleation and capillarity phenomena, but it is now generally agreed that thermodynamic properties computed for isolated clusters, the only practical approach at this point, give an adequate representation of the properties of clusters in equilibrium with the solvent vapor under realistic experimental conditions. See. e.g., Seinfeld, J. H.: Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley: New York, 1998; p. 569. Lee, J. K.; Barker, J. A.; Abraham, F. F. J. Chem. Phys. 1973, 58, 3166. Reiss, H.; Tabazadeh, A.; Talbot, J. J. Chem. Phys. 1990, 92, 1266. Weakliem, C. L.; Reiss, H. J. Phys. Chem. 1994, 98, 6408.
    • (1998) Atmospheric Chemistry and Physics: from Air Pollution to Climate Change , pp. 569
    • Seinfeld, J.H.1    Pandis, S.N.2
  • 110
    • 51149205329 scopus 로고
    • It should be pointed out that computer simulations are performed for isolated clusters, whereas actual experimental measurements involve clusters of various size in thermodynamic equilibrium with the solvent vapor. The proper definition of the physical cluster has been a long-standing issue in investigations of nucleation and capillarity phenomena, but it is now generally agreed that thermodynamic properties computed for isolated clusters, the only practical approach at this point, give an adequate representation of the properties of clusters in equilibrium with the solvent vapor under realistic experimental conditions. See. e.g., Seinfeld, J. H.: Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley: New York, 1998; p. 569. Lee, J. K.; Barker, J. A.; Abraham, F. F. J. Chem. Phys. 1973, 58, 3166. Reiss, H.; Tabazadeh, A.; Talbot, J. J. Chem. Phys. 1990, 92, 1266. Weakliem, C. L.; Reiss, H. J. Phys. Chem. 1994, 98, 6408.
    • (1973) J. Chem. Phys. , vol.58 , pp. 3166
    • Lee, J.K.1    Barker, J.A.2    Abraham, F.F.3
  • 111
    • 0001280213 scopus 로고
    • It should be pointed out that computer simulations are performed for isolated clusters, whereas actual experimental measurements involve clusters of various size in thermodynamic equilibrium with the solvent vapor. The proper definition of the physical cluster has been a long-standing issue in investigations of nucleation and capillarity phenomena, but it is now generally agreed that thermodynamic properties computed for isolated clusters, the only practical approach at this point, give an adequate representation of the properties of clusters in equilibrium with the solvent vapor under realistic experimental conditions. See. e.g., Seinfeld, J. H.: Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley: New York, 1998; p. 569. Lee, J. K.; Barker, J. A.; Abraham, F. F. J. Chem. Phys. 1973, 58, 3166. Reiss, H.; Tabazadeh, A.; Talbot, J. J. Chem. Phys. 1990, 92, 1266. Weakliem, C. L.; Reiss, H. J. Phys. Chem. 1994, 98, 6408.
    • (1990) J. Chem. Phys. , vol.92 , pp. 1266
    • Reiss, H.1    Tabazadeh, A.2    Talbot, J.3
  • 112
    • 0000477419 scopus 로고
    • It should be pointed out that computer simulations are performed for isolated clusters, whereas actual experimental measurements involve clusters of various size in thermodynamic equilibrium with the solvent vapor. The proper definition of the physical cluster has been a long-standing issue in investigations of nucleation and capillarity phenomena, but it is now generally agreed that thermodynamic properties computed for isolated clusters, the only practical approach at this point, give an adequate representation of the properties of clusters in equilibrium with the solvent vapor under realistic experimental conditions. See. e.g., Seinfeld, J. H.: Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley: New York, 1998; p. 569. Lee, J. K.; Barker, J. A.; Abraham, F. F. J. Chem. Phys. 1973, 58, 3166. Reiss, H.; Tabazadeh, A.; Talbot, J. J. Chem. Phys. 1990, 92, 1266. Weakliem, C. L.; Reiss, H. J. Phys. Chem. 1994, 98, 6408.
    • (1994) J. Phys. Chem. , vol.98 , pp. 6408
    • Weakliem, C.L.1    Reiss, H.2
  • 115
    • 0000926167 scopus 로고
    • Mulliken, R. S. J. Chim. Phys. 1949, 46, 497. Pariser, R. J. Chem. Phys. 1953, 21, 568. Pohl, H. A.; Rein, R.; Appel, K. J. Chem. Phys. 1964, 41, 3383.
    • (1949) J. Chim. Phys. , vol.46 , pp. 497
    • Mulliken, R.S.1
  • 116
    • 0001182463 scopus 로고
    • Mulliken, R. S. J. Chim. Phys. 1949, 46, 497. Pariser, R. J. Chem. Phys. 1953, 21, 568. Pohl, H. A.; Rein, R.; Appel, K. J. Chem. Phys. 1964, 41, 3383.
    • (1953) J. Chem. Phys. , vol.21 , pp. 568
    • Pariser, R.1
  • 117
    • 84962384378 scopus 로고
    • Mulliken, R. S. J. Chim. Phys. 1949, 46, 497. Pariser, R. J. Chem. Phys. 1953, 21, 568. Pohl, H. A.; Rein, R.; Appel, K. J. Chem. Phys. 1964, 41, 3383.
    • (1964) J. Chem. Phys. , vol.41 , pp. 3383
    • Pohl, H.A.1    Rein, R.2    Appel, K.3
  • 123
    • 84962409244 scopus 로고    scopus 로고
    • note
    • In the NEMO model of ref 60, individual contributions (electrostatic, polarization, dispersion, etc.) to the solvent-solvent binding energy are arbitrarily obtained from ab initio data and used as the basis for parameterization.
  • 124
    • 33645934660 scopus 로고
    • See also ref 64
    • The importance of the water model quadrupole moments has also been strongly implicated in the adequate description of bulk liquid properties [Carnie, S. L.; Patey, G. N. Mol. Phys. 1982, 47, 1129. See also ref 64].
    • (1982) Mol. Phys. , vol.47 , pp. 1129
    • Carnie, S.L.1    Patey, G.N.2
  • 125
    • 84962391692 scopus 로고    scopus 로고
    • note
    • Even though they were not explicitly included in the parameterization procedure, the octupole moments of our water model point charge distribution are also in semiquantitative agreement with the predictions of ab initio calculations (see ref 59).
  • 130
    • 0342876686 scopus 로고
    • Another approach for introducing polarization effects in molecular systems is the electronegativity equalization [Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315. York, D. M. Int. J. Quantum Chem., Quantum Chem. Symp. 1995, 29, 385 ] or charge equilibration method of Rappé et al. [Rappé, A. K.; Goddard, W. A. J. Phys. Chem. 1991, 95, 3358], which can be derived from density functional theory [Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. Clarendon Press: New York, 1989]. Briefly, in this method, the atomic charges are solved by minimizing the total electrostatic energy of the molecular system (or equivalently equating the atomic chemical potentials), and the atomic energy is usually assumed to be a parameterized quadratic form of the atomic charges. The charge equilibration method has had success describing the charge distributions of large molecules at their ground state equilibrium geometry, and fluctuating charge water models employing this technique have been proposed, such as the TIP4P-FQ model of Berne and co-workers [Rick, S. W.; Stuart, S. J.; Berne, B. J. J. Chem. Phys. 1994, 101, 6141. Rick, S. W.; Stuart, S. J.; Bader, J. S.; Berne, B. J. J. Mol. Liq. 1995, 65/66, 31] , which reproduces various properties of liquid water quite well. However, we were unable to reproduce both the energetics and (ab initio) charge distribution of ion-water clusters or ion pair-water clusters, whether we employed the TIP4P-FQ and OPLS parameters, the original parameters of Rappé et al., or a combination of both sets. Another set of more adequate parameters could be derived, but they did not seem to be appropriate for describing the ion pair-water cluster charge distribution over a wide range of NaI internuclear separations. Thus, it appears that the quadratic expression in the atomic charges assumed for the atomic energy may not be a very good representation of the polarization energy for the complex molecular systems studied here, and the method does not seem readily applicable to chemical systems that react or dissociate. The Rappé group is presently developing extensions of the charge equilibration method to reacting systems (A. K. Rappé, private communication).
    • (1986) J. Am. Chem. Soc. , vol.108 , pp. 4315
    • Mortier, W.J.1    Ghosh, S.K.2    Shankar, S.3
  • 131
    • 84981621061 scopus 로고
    • Another approach for introducing polarization effects in molecular systems is the electronegativity equalization [Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315. York, D. M. Int. J. Quantum Chem., Quantum Chem. Symp. 1995, 29, 385 ] or charge equilibration method of Rappé et al. [Rappé, A. K.; Goddard, W. A. J. Phys. Chem. 1991, 95, 3358], which can be derived from density functional theory [Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. Clarendon Press: New York, 1989]. Briefly, in this method, the atomic charges are solved by minimizing the total electrostatic energy of the molecular system (or equivalently equating the atomic chemical potentials), and the atomic energy is usually assumed to be a parameterized quadratic form of the atomic charges. The charge equilibration method has had success describing the charge distributions of large molecules at their ground state equilibrium geometry, and fluctuating charge water models employing this technique have been proposed, such as the TIP4P-FQ model of Berne and co-workers [Rick, S. W.; Stuart, S. J.; Berne, B. J. J. Chem. Phys. 1994, 101, 6141. Rick, S. W.; Stuart, S. J.; Bader, J. S.; Berne, B. J. J. Mol. Liq. 1995, 65/66, 31] , which reproduces various properties of liquid water quite well. However, we were unable to reproduce both the energetics and (ab initio) charge distribution of ion-water clusters or ion pair-water clusters, whether we employed the TIP4P-FQ and OPLS parameters, the original parameters of Rappé et al., or a combination of both sets. Another set of more adequate parameters could be derived, but they did not seem to be appropriate for describing the ion pair-water cluster charge distribution over a wide range of NaI internuclear separations. Thus, it appears that the quadratic expression in the atomic charges assumed for the atomic energy may not be a very good representation of the polarization energy for the complex molecular systems studied here, and the method does not seem readily applicable to chemical systems that react or dissociate. The Rappé group is presently developing extensions of the charge equilibration method to reacting systems (A. K. Rappé, private communication).
    • (1995) Int. J. Quantum Chem., Quantum Chem. Symp. , vol.29 , pp. 385
    • York, D.M.1
  • 132
    • 33748481964 scopus 로고
    • Another approach for introducing polarization effects in molecular systems is the electronegativity equalization [Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315. York, D. M. Int. J. Quantum Chem., Quantum Chem. Symp. 1995, 29, 385 ] or charge equilibration method of Rappé et al. [Rappé, A. K.; Goddard, W. A. J. Phys. Chem. 1991, 95, 3358], which can be derived from density functional theory [Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. Clarendon Press: New York, 1989]. Briefly, in this method, the atomic charges are solved by minimizing the total electrostatic energy of the molecular system (or equivalently equating the atomic chemical potentials), and the atomic energy is usually assumed to be a parameterized quadratic form of the atomic charges. The charge equilibration method has had success describing the charge distributions of large molecules at their ground state equilibrium geometry, and fluctuating charge water models employing this technique have been proposed, such as the TIP4P-FQ model of Berne and co-workers [Rick, S. W.; Stuart, S. J.; Berne, B. J. J. Chem. Phys. 1994, 101, 6141. Rick, S. W.; Stuart, S. J.; Bader, J. S.; Berne, B. J. J. Mol. Liq. 1995, 65/66, 31] , which reproduces various properties of liquid water quite well. However, we were unable to reproduce both the energetics and (ab initio) charge distribution of ion-water clusters or ion pair-water clusters, whether we employed the TIP4P-FQ and OPLS parameters, the original parameters of Rappé et al., or a combination of both sets. Another set of more adequate parameters could be derived, but they did not seem to be appropriate for describing the ion pair-water cluster charge distribution over a wide range of NaI internuclear separations. Thus, it appears that the quadratic expression in the atomic charges assumed for the atomic energy may not be a very good representation of the polarization energy for the complex molecular systems studied here, and the method does not seem readily applicable to chemical systems that react or dissociate. The Rappé group is presently developing extensions of the charge equilibration method to reacting systems (A. K. Rappé, private communication).
    • (1991) J. Phys. Chem. , vol.95 , pp. 3358
    • Rappé, A.K.1    Goddard, W.A.2
  • 133
    • 0003569570 scopus 로고
    • Clarendon Press: New York
    • Another approach for introducing polarization effects in molecular systems is the electronegativity equalization [Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315. York, D. M. Int. J. Quantum Chem., Quantum Chem. Symp. 1995, 29, 385 ] or charge equilibration method of Rappé et al. [Rappé, A. K.; Goddard, W. A. J. Phys. Chem. 1991, 95, 3358], which can be derived from density functional theory [Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. Clarendon Press: New York, 1989]. Briefly, in this method, the atomic charges are solved by minimizing the total electrostatic energy of the molecular system (or equivalently equating the atomic chemical potentials), and the atomic energy is usually assumed to be a parameterized quadratic form of the atomic charges. The charge equilibration method has had success describing the charge distributions of large molecules at their ground state equilibrium geometry, and fluctuating charge water models employing this technique have been proposed, such as the TIP4P-FQ model of Berne and co-workers [Rick, S. W.; Stuart, S. J.; Berne, B. J. J. Chem. Phys. 1994, 101, 6141. Rick, S. W.; Stuart, S. J.; Bader, J. S.; Berne, B. J. J. Mol. Liq. 1995, 65/66, 31] , which reproduces various properties of liquid water quite well. However, we were unable to reproduce both the energetics and (ab initio) charge distribution of ion-water clusters or ion pair-water clusters, whether we employed the TIP4P-FQ and OPLS parameters, the original parameters of Rappé et al., or a combination of both sets. Another set of more adequate parameters could be derived, but they did not seem to be appropriate for describing the ion pair-water cluster charge distribution over a wide range of NaI internuclear separations. Thus, it appears that the quadratic expression in the atomic charges assumed for the atomic energy may not be a very good representation of the polarization energy for the complex molecular systems studied here, and the method does not seem readily applicable to chemical systems that react or dissociate. The Rappé group is presently developing extensions of the charge equilibration method to reacting systems (A. K. Rappé, private communication).
    • (1989) Density-Functional Theory of Atoms and Molecules
    • Parr, R.G.1    Yang, W.2
  • 134
    • 36448999850 scopus 로고
    • Another approach for introducing polarization effects in molecular systems is the electronegativity equalization [Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315. York, D. M. Int. J. Quantum Chem., Quantum Chem. Symp. 1995, 29, 385 ] or charge equilibration method of Rappé et al. [Rappé, A. K.; Goddard, W. A. J. Phys. Chem. 1991, 95, 3358], which can be derived from density functional theory [Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. Clarendon Press: New York, 1989]. Briefly, in this method, the atomic charges are solved by minimizing the total electrostatic energy of the molecular system (or equivalently equating the atomic chemical potentials), and the atomic energy is usually assumed to be a parameterized quadratic form of the atomic charges. The charge equilibration method has had success describing the charge distributions of large molecules at their ground state equilibrium geometry, and fluctuating charge water models employing this technique have been proposed, such as the TIP4P-FQ model of Berne and co-workers [Rick, S. W.; Stuart, S. J.; Berne, B. J. J. Chem. Phys. 1994, 101, 6141. Rick, S. W.; Stuart, S. J.; Bader, J. S.; Berne, B. J. J. Mol. Liq. 1995, 65/66, 31] , which reproduces various properties of liquid water quite well. However, we were unable to reproduce both the energetics and (ab initio) charge distribution of ion-water clusters or ion pair-water clusters, whether we employed the TIP4P-FQ and OPLS parameters, the original parameters of Rappé et al., or a combination of both sets. Another set of more adequate parameters could be derived, but they did not seem to be appropriate for describing the ion pair-water cluster charge distribution over a wide range of NaI internuclear separations. Thus, it appears that the quadratic expression in the atomic charges assumed for the atomic energy may not be a very good representation of the polarization energy for the complex molecular systems studied here, and the method does not seem readily applicable to chemical systems that react or dissociate. The Rappé group is presently developing extensions of the charge equilibration method to reacting systems (A. K. Rappé, private communication).
    • (1994) J. Chem. Phys. , vol.101 , pp. 6141
    • Rick, S.W.1    Stuart, S.J.2    Berne, B.J.3
  • 135
    • 58149211457 scopus 로고
    • Another approach for introducing polarization effects in molecular systems is the electronegativity equalization [Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315. York, D. M. Int. J. Quantum Chem., Quantum Chem. Symp. 1995, 29, 385 ] or charge equilibration method of Rappé et al. [Rappé, A. K.; Goddard, W. A. J. Phys. Chem. 1991, 95, 3358], which can be derived from density functional theory [Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. Clarendon Press: New York, 1989]. Briefly, in this method, the atomic charges are solved by minimizing the total electrostatic energy of the molecular system (or equivalently equating the atomic chemical potentials), and the atomic energy is usually assumed to be a parameterized quadratic form of the atomic charges. The charge equilibration method has had success describing the charge distributions of large molecules at their ground state equilibrium geometry, and fluctuating charge water models employing this technique have been proposed, such as the TIP4P-FQ model of Berne and co-workers [Rick, S. W.; Stuart, S. J.; Berne, B. J. J. Chem. Phys. 1994, 101, 6141. Rick, S. W.; Stuart, S. J.; Bader, J. S.; Berne, B. J. J. Mol. Liq. 1995, 65/66, 31] , which reproduces various properties of liquid water quite well. However, we were unable to reproduce both the energetics and (ab initio) charge distribution of ion-water clusters or ion pair-water clusters, whether we employed the TIP4P-FQ and OPLS parameters, the original parameters of Rappé et al., or a combination of both sets. Another set of more adequate parameters could be derived, but they did not seem to be appropriate for describing the ion pair-water cluster charge distribution over a wide range of NaI internuclear separations. Thus, it appears that the quadratic expression in the atomic charges assumed for the atomic energy may not be a very good representation of the polarization energy for the complex molecular systems studied here, and the method does not seem readily applicable to chemical systems that react or dissociate. The Rappé group is presently developing extensions of the charge equilibration method to reacting systems (A. K. Rappé, private communication).
    • (1995) J. Mol. Liq. , vol.65-66 , pp. 31
    • Rick, S.W.1    Stuart, S.J.2    Bader, J.S.3    Berne, B.J.4
  • 136
    • 84962426840 scopus 로고    scopus 로고
    • private communication
    • Another approach for introducing polarization effects in molecular systems is the electronegativity equalization [Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315. York, D. M. Int. J. Quantum Chem., Quantum Chem. Symp. 1995, 29, 385 ] or charge equilibration method of Rappé et al. [Rappé, A. K.; Goddard, W. A. J. Phys. Chem. 1991, 95, 3358], which can be derived from density functional theory [Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. Clarendon Press: New York, 1989]. Briefly, in this method, the atomic charges are solved by minimizing the total electrostatic energy of the molecular system (or equivalently equating the atomic chemical potentials), and the atomic energy is usually assumed to be a parameterized quadratic form of the atomic charges. The charge equilibration method has had success describing the charge distributions of large molecules at their ground state equilibrium geometry, and fluctuating charge water models employing this technique have been proposed, such as the TIP4P-FQ model of Berne and co-workers [Rick, S. W.; Stuart, S. J.; Berne, B. J. J. Chem. Phys. 1994, 101, 6141. Rick, S. W.; Stuart, S. J.; Bader, J. S.; Berne, B. J. J. Mol. Liq. 1995, 65/66, 31] , which reproduces various properties of liquid water quite well. However, we were unable to reproduce both the energetics and (ab initio) charge distribution of ion-water clusters or ion pair-water clusters, whether we employed the TIP4P-FQ and OPLS parameters, the original parameters of Rappé et al., or a combination of both sets. Another set of more adequate parameters could be derived, but they did not seem to be appropriate for describing the ion pair-water cluster charge distribution over a wide range of NaI internuclear separations. Thus, it appears that the quadratic expression in the atomic charges assumed for the atomic energy may not be a very good representation of the polarization energy for the complex molecular systems studied here, and the method does not seem readily applicable to chemical systems that react or dissociate. The Rappé group is presently developing extensions of the charge equilibration method to reacting systems (A. K. Rappé, private communication).
    • Rappé, A.K.1
  • 140
    • 84962373368 scopus 로고
    • Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.
    • (1971) J. Chem. Phys. , vol.54 , pp. 724
    • Ditchfield, R.1    Hehre, W.J.2    Pople, J.A.3
  • 141
    • 0347170005 scopus 로고
    • Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.
    • (1972) J. Chem. Phys. , vol.56 , pp. 2257
    • Hehre, W.J.1    Ditchfield, R.2    Pople, J.A.3
  • 142
    • 33645949559 scopus 로고
    • Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.
    • (1982) J. Chem. Phys. , vol.77 , pp. 3654
    • Francl, M.M.1    Pietro, W.J.2    Hehre, W.J.3    Binkley, J.S.4    Gordon, M.S.5    DeFrees, D.J.6    Pople, J.A.7
  • 143
    • 33748545144 scopus 로고
    • Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.
    • (1973) Theor. Chim. Acta , vol.28 , pp. 213-222
    • Hariharan, P.C.1    Pople, J.A.2
  • 144
    • 0005744966 scopus 로고
    • Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. 1984, 81, 6026. Stevens, W. J.; Basch, H.; Krauss, M.; Jasien, P. Can. J. Chem. 1992, 70, 612. Cundari, T. R.; Stevens, W. J. J. Chem. Phys. 1993, 98, 5555.
    • (1984) J. Chem. Phys. , vol.81 , pp. 6026
    • Stevens, W.J.1    Basch, H.2    Krauss, M.3
  • 145
    • 0005744966 scopus 로고
    • Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. 1984, 81, 6026. Stevens, W. J.; Basch, H.; Krauss, M.; Jasien, P. Can. J. Chem. 1992, 70, 612. Cundari, T. R.; Stevens, W. J. J. Chem. Phys. 1993, 98, 5555.
    • (1992) Can. J. Chem. , vol.70 , pp. 612
    • Stevens, W.J.1    Basch, H.2    Krauss, M.3    Jasien, P.4
  • 146
    • 34548254354 scopus 로고
    • Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. 1984, 81, 6026. Stevens, W. J.; Basch, H.; Krauss, M.; Jasien, P. Can. J. Chem. 1992, 70, 612. Cundari, T. R.; Stevens, W. J. J. Chem. Phys. 1993, 98, 5555.
    • (1993) J. Chem. Phys. , vol.98 , pp. 5555
    • Cundari, T.R.1    Stevens, W.J.2
  • 155
    • 0043088506 scopus 로고
    • Prue, J. E. J. Chem. Educ. 1969, 46, 13. Justice, M.-C.; Justice, J.-C. J. Sol. Chem. 1976, 5, 543.
    • (1969) J. Chem. Educ. , vol.46 , pp. 13
    • Prue, J.E.1
  • 157
    • 84962333633 scopus 로고    scopus 로고
    • note
    • - solvated in separate clusters, with W(r) defined to be zero in this situation, thereby defined as an asymptotic reference free energy.
  • 158
    • 84962333634 scopus 로고    scopus 로고
    • note
    • The convergence referred to is "local", in that contributions from more than a few kT units above the SSIP minimum are negligible, so long as one restricts the integration to the neighborhood of the SSIP well.
  • 159
    • 84962377787 scopus 로고    scopus 로고
    • note
    • The CIP cluster diameter is simply estimated as the largest intermolecular O-H distance in the cluster structure, and the average cluster dimension is found by averaging over a few thousands cluster configurations. Since the upper bound of the SSIP integral is in practice always smaller than the CIP cluster diameter, the SSIP population integral obviously does not include configurations corresponding to "free" ions solvated in separate clusters.
  • 160
    • 84962377791 scopus 로고    scopus 로고
    • unpublished results
    • Simulations of NaI in liquid water, with the same model potentials as employed here, are underway to make a more quantitative comparison between clusters and bulk solution results. Peslherbe, G. H.; Koch, D., unpublished results.
    • Peslherbe, G.H.1    Koch, D.2
  • 161
    • 84962377794 scopus 로고    scopus 로고
    • note
    • The polarization of the water molecule does not depend on its local environment and is only represented in an average way with the TIP4P model. The dipole moment of the TIP4P water is close to that of liquid water.
  • 166
    • 5644235805 scopus 로고
    • Jortner, J. Mol. Phys. 1962, 5, 257. Barnett, R. N.; Landman, U.; Cleveland, C. L.; Jortner, J. Chem. Phys. Lett. 1988, 145, 382.
    • (1962) Mol. Phys. , vol.5 , pp. 257
    • Jortner, J.1
  • 169
    • 0001139786 scopus 로고
    • Barnett, R. N.; Landman, U.; Cleveland, C. L.; Jortner, J. J. Chem. Phys. 1988, 88, 4429. Rips, I.; Jortner, J. J. Chem. Phys. 1992, 97, 536.
    • (1992) J. Chem. Phys. , vol.97 , pp. 536
    • Rips, I.1    Jortner, J.2
  • 172
    • 84946893847 scopus 로고
    • Ghio, C.; Scrocco, E.; Tomasi, J. In Environmental Effects on Molecular Structures and Properties; B. Pullman, Ed.; Reidel: Dordrecht, 1976. Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117. Pascual-Ahuir, J. L.; Silla, E.; Tomasi, J.; Bonaccorsi, R. J. Comput. Chem. 1987, 8, 778.
    • (1981) Chem. Phys. , vol.55 , pp. 117
    • Miertus, S.1    Scrocco, E.2    Tomasi, J.3
  • 173
    • 84988109711 scopus 로고
    • Ghio, C.; Scrocco, E.; Tomasi, J. In Environmental Effects on Molecular Structures and Properties; B. Pullman, Ed.; Reidel: Dordrecht, 1976. Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117. Pascual-Ahuir, J. L.; Silla, E.; Tomasi, J.; Bonaccorsi, R. J. Comput. Chem. 1987, 8, 778.
    • (1987) J. Comput. Chem. , vol.8 , pp. 778
    • Pascual-Ahuir, J.L.1    Silla, E.2    Tomasi, J.3    Bonaccorsi, R.4
  • 174
    • 84962356423 scopus 로고    scopus 로고
    • The method actually proves exact for point charges
    • The method actually proves exact for point charges.
  • 176
    • 0041585738 scopus 로고
    • -3 convergence and (b) the approximation in eq 13 is most similar to that made in the numerical model calculations to which it is compared in Figure 6.
    • (1991) Chem. Phys. Lett. , vol.180 , pp. 353
    • Dilonardo, M.1    Maestro, M.2
  • 177
    • 0001594025 scopus 로고
    • The evaporative ensemble model has been discussed and/or reviewed in: Klots, C. E. Nature 1987, 327, 222. Klots, C. E. Int. J. Mass Spectrom. Ion Processes 1990, 100, 457, Klots, C. E. Z. Phys. D 1991, 20, 105. Klots, C. E. Z. Phys. D 1991, 21, 335. Klots, C. E. J. Chem. Phys. 1993, 98, 1110.
    • (1987) Nature , vol.327 , pp. 222
    • Klots, C.E.1
  • 178
    • 0001352960 scopus 로고
    • The evaporative ensemble model has been discussed and/or reviewed in: Klots, C. E. Nature 1987, 327, 222. Klots, C. E. Int. J. Mass Spectrom. Ion Processes 1990, 100, 457, Klots, C. E. Z. Phys. D 1991, 20, 105. Klots, C. E. Z. Phys. D 1991, 21, 335. Klots, C. E. J. Chem. Phys. 1993, 98, 1110.
    • (1990) Int. J. Mass Spectrom. Ion Processes , vol.100 , pp. 457
    • Klots, C.E.1
  • 179
    • 0001235126 scopus 로고
    • The evaporative ensemble model has been discussed and/or reviewed in: Klots, C. E. Nature 1987, 327, 222. Klots, C. E. Int. J. Mass Spectrom. Ion Processes 1990, 100, 457, Klots, C. E. Z. Phys. D 1991, 20, 105. Klots, C. E. Z. Phys. D 1991, 21, 335. Klots, C. E. J. Chem. Phys. 1993, 98, 1110.
    • (1991) Z. Phys. D , vol.20 , pp. 105
    • Klots, C.E.1
  • 180
    • 34249929174 scopus 로고
    • The evaporative ensemble model has been discussed and/or reviewed in: Klots, C. E. Nature 1987, 327, 222. Klots, C. E. Int. J. Mass Spectrom. Ion Processes 1990, 100, 457, Klots, C. E. Z. Phys. D 1991, 20, 105. Klots, C. E. Z. Phys. D 1991, 21, 335. Klots, C. E. J. Chem. Phys. 1993, 98, 1110.
    • (1991) Z. Phys. D , vol.21 , pp. 335
    • Klots, C.E.1
  • 181
    • 36449006493 scopus 로고
    • The evaporative ensemble model has been discussed and/or reviewed in: Klots, C. E. Nature 1987, 327, 222. Klots, C. E. Int. J. Mass Spectrom. Ion Processes 1990, 100, 457, Klots, C. E. Z. Phys. D 1991, 20, 105. Klots, C. E. Z. Phys. D 1991, 21, 335. Klots, C. E. J. Chem. Phys. 1993, 98, 1110.
    • (1993) J. Chem. Phys. , vol.98 , pp. 1110
    • Klots, C.E.1
  • 182
    • 84962356409 scopus 로고    scopus 로고
    • unpublished results
    • n cluster thermodynamics is being studied in greater detail using quantum Monte Carlo simulations. Peslherbe, G. H.; Faivre, D. unpublished results.
    • Peslherbe, G.H.1    Faivre, D.2
  • 183
    • 0043088509 scopus 로고
    • U.S. GPO: Washington
    • In contrast to the MP2 calculations discussed in section II.B.3, which are nonvariational but presumably yield reliable relative energies, CI(S) calculations are not size-consistent; this means that this level of theory is certainly insufficient to describe the NaI ground and first electronically excited state energy curves over the whole range of NaI internuclear separations. Using a not very large basis set like the modified 6-31+G** decreases the size-consistency error (and the small correlation space in CI(S) calculations presumably decreases the basis-set-superposition-error), but also results in a poorer description of the wave function in general. CI calculations can be made size-consistent at the expense of including up to quadrupole excitations, but reliable CI calculations require very large basis sets in any event [see. e.g., ref 71]. It should also be noted that a rigorous treatment of the NaI system should include spin-orbit coupling [see refs 36 and 56], which splits the energy levels of atomic iodine by as much as 0.96 eV [see Moore, C. E. Atomic Energy Lewis; U.S. GPO: Washington, 1958], and certainly must be significant for NaI as well.
    • (1958) Atomic Energy Lewis
    • Moore, C.E.1
  • 184
    • 84962356446 scopus 로고    scopus 로고
    • note
    • Note that a more refined treatment such as a multireference CI is more justified for model SSIPs than for CIPs, since the NaI wave function at large internuclear separations is best represented as a combination of ionic and covalent references, especially close to the avoided crossing region. As a result, the present CI(S) results may be more reliable for model CIPs than for SSIPs.
  • 185
    • 84962409192 scopus 로고    scopus 로고
    • note
    • Note that the increase in the state energy gap of the ion pair clusters is consistent with the ion pair solvation energies (i.e., the cluster binding energies) calculated with the MP2 level of theory and listed in Table 2.
  • 186
    • 84962409198 scopus 로고    scopus 로고
    • We anticipate that the blue shifting evident in Table 5 for increasing number of solvent molecules would cease with several solvent shells
    • We anticipate that the blue shifting evident in Table 5 for increasing number of solvent molecules would cease with several solvent shells.
  • 187
    • 84962356436 scopus 로고    scopus 로고
    • note
    • It is important to note that the results quoted for 6 Åseparations are at separations for which a SSIP is only stable for larger clusters (cf. Table 3); there are no stable SSIP species at this separation for the clusters in Table 5. This however does not compromise the point of Table 5, which is to indicate trends in energy gap, transition dipole moment and oscillator strength for the ion pair upon addition of water solvent molecules.
  • 188
    • 33751386180 scopus 로고
    • Liang, C.; Newton, M. D. J. Phys. Chem. 1993, 97, 3199. Cave, R. J.; Newton, M. D.; Kumar, K.; Zimmt, M. B. J. Phys. Chem. 1995, 99, 17501.
    • (1993) J. Phys. Chem. , vol.97 , pp. 3199
    • Liang, C.1    Newton, M.D.2
  • 190
    • 84962356442 scopus 로고    scopus 로고
    • This aspect was first clarified in discussions of C. Jouvet (Orsay) and J.T.H.
    • This aspect was first clarified in discussions of C. Jouvet (Orsay) and J.T.H.
  • 197
    • 84962375648 scopus 로고    scopus 로고
    • unpublished results
    • Peslherbe, G. H., unpublished results.
    • Peslherbe, G.H.1
  • 198
    • 84962375650 scopus 로고    scopus 로고
    • n=1.9 Clusters: A Theoretical Study of the Contact Ion Pair Versus the Separated Ion Pair Structures in a Molecular Cluster
    • n (n = 12) may exist preferentially as CIPs at room temperature. In light of our present findings for water, these clusters might thus have optically accessible excited states and could be involved in the cluster photodissociation experiments unless some alternative CTTS mechanism is involved. These issues deserve further investigation.
    • J. Phys. Chem. A
    • Grégoire, G.1    Brenner, V.2    Millié, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.