-
1
-
-
0003678550
-
-
Oxford University Press, New York
-
D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987), Sec. 3.7. Note that minimizing the information content of the ensemble is the same as maximizing its entropy.
-
(1987)
Introduction to Modern Statistical Mechanics
-
-
Chandler, D.1
-
2
-
-
0030288124
-
-
See, e.g., H. Bidar, D. Jou, and M. Criado-Sancho, Physica A 233, 163 (1996), and references therein.PHYADX
-
(1996)
Physica A
, vol.233
, pp. 163
-
-
Bidar, H.1
Jou, D.2
Criado-Sancho, M.3
-
8
-
-
85037253202
-
-
26, 343(1977);
-
(1977)
, vol.26
, pp. 343
-
-
-
10
-
-
0003402048
-
-
North-Holland, Amsterdam, edited by G. Iooss R. H. G. Helleman, and R. Stora
-
M. V. Berry, in Chaotic Behavior of Deterministic Systems, Les Houches XXXVI, edited by G. Iooss, R. H. G. Helleman, and R. Stora (North-Holland, Amsterdam, 1983).
-
(1983)
Chaotic Behavior of Deterministic Systems, Les Houches XXXVI
-
-
Berry, M.V.1
-
11
-
-
85037222248
-
-
This allows us to replace ensemble averaging with local smoothing
-
This allows us to replace ensemble averaging with local smoothing.
-
-
-
-
13
-
-
4243686209
-
-
V. N. Prigodin et al., 75, 2392 (1995);
-
(1995)
, vol.75
, pp. 2392
-
-
Prigodin, V.N.1
-
14
-
-
85037179578
-
-
76, 1982 (1996);
-
(1996)
, vol.76
, pp. 1982
-
-
-
17
-
-
0003918536
-
-
Cambridge University Press, Cambridge, England
-
L. S. Brown, Quantum Field Theory (Cambridge University Press, Cambridge, England, 1992), Chap. 1.
-
(1992)
Quantum Field Theory
-
-
Brown, L.S.1
-
19
-
-
0004138120
-
-
Springer-Verlag, Berlin
-
R. Kubo, M. Toda, and N. Hashisume, Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1985), Sec. 1.4.
-
(1985)
Statistical Physics II: Nonequilibrium Statistical Mechanics
-
-
Kubo, R.1
Toda, M.2
Hashisume, N.3
-
20
-
-
85037247022
-
-
Note that the computational effort required to solve Schrödinger’s equation grows exponentially with the dimensionality (Formula presented) of the configuration space
-
Note that the computational effort required to solve Schrödinger’s equation grows exponentially with the dimensionality (Formula presented) of the configuration space.
-
-
-
-
21
-
-
4243410292
-
-
See, e.g., the use of Berry’s conjecture to derive eigenstate thermalization. M. Srednicki, Phys. Rev. E 50, 888 (1994). PLEEE8
-
(1994)
Phys. Rev. E
, vol.50
, pp. 888
-
-
Srednicki, M.1
|