-
1
-
-
0004034109
-
-
Springer-Verlag, Berlin, Heidelberg, New York
-
Berger, M., Gauduchon, P. and Mazet, E.: Lecture Notes in Math. 194, Springer-Verlag, Berlin, Heidelberg, New York, 1971; Gallot, S., Hulin, D. and Lafontaine, J.: Riemannian Geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1987, Chap. IV D, pp. 196-202.
-
(1971)
Lecture Notes in Math.
, vol.194
-
-
Berger, M.1
Gauduchon, P.2
Mazet, E.3
-
2
-
-
1542548506
-
-
Springer-Verlag, Berlin, Heidelberg, New York, Chap. IV D
-
Berger, M., Gauduchon, P. and Mazet, E.: Lecture Notes in Math. 194, Springer-Verlag, Berlin, Heidelberg, New York, 1971; Gallot, S., Hulin, D. and Lafontaine, J.: Riemannian Geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1987, Chap. IV D, pp. 196-202.
-
(1987)
Riemannian Geometry
, pp. 196-202
-
-
Gallot, S.1
Hulin, D.2
Lafontaine, J.3
-
4
-
-
1542443945
-
-
Contribution to De Witt and De Witt (eds)
-
Lichnerowicz, A.: Bull. Soc. Math. France 92 (11) (1964). Contribution to De Witt and De Witt (eds), Relativity, Groups and Topology, Les Houches 1963, Science Publishers Inc., New York, 1964.
-
(1964)
Bull. Soc. Math. France
, vol.92
, Issue.11
-
-
Lichnerowicz, A.1
-
5
-
-
0003957212
-
-
les Houches 1963, Science Publishers Inc., New York
-
Lichnerowicz, A.: Bull. Soc. Math. France 92 (11) (1964). Contribution to De Witt and De Witt (eds), Relativity, Groups and Topology, Les Houches 1963, Science Publishers Inc., New York, 1964.
-
(1964)
Relativity, Groups and Topology
-
-
-
7
-
-
1542443944
-
-
Thesis, Princeton University
-
As the literature on the subject is enormous, an extensive list of references is impossible. See, for instance Fulling, S. Thesis, Princeton University (1972); Parker, L. and Fulling, S.: Phys. Rev, D 9 (1974), 341; Woodhouse, N.: Phys. Rev. Lett. 36 (1976), 999. For a recent survey, see Fulling, S.: Aspects of Quantum Field Theory in Curved Spacetime, Cambridge University Press, 1989.
-
(1972)
-
-
Fulling, S.1
-
8
-
-
0001667048
-
-
As the literature on the subject is enormous, an extensive list of references is impossible. See, for instance Fulling, S. Thesis, Princeton University (1972); Parker, L. and Fulling, S.: Phys. Rev, D 9 (1974), 341; Woodhouse, N.: Phys. Rev. Lett. 36 (1976), 999. For a recent survey, see Fulling, S.: Aspects of Quantum Field Theory in Curved Spacetime, Cambridge University Press, 1989.
-
(1974)
Phys. Rev, D
, vol.9
, pp. 341
-
-
Parker, L.1
Fulling, S.2
-
9
-
-
24544442021
-
-
As the literature on the subject is enormous, an extensive list of references is impossible. See, for instance Fulling, S. Thesis, Princeton University (1972); Parker, L. and Fulling, S.: Phys. Rev, D 9 (1974), 341; Woodhouse, N.: Phys. Rev. Lett. 36 (1976), 999. For a recent survey, see Fulling, S.: Aspects of Quantum Field Theory in Curved Spacetime, Cambridge University Press, 1989.
-
(1976)
Phys. Rev. Lett.
, vol.36
, pp. 999
-
-
Woodhouse, N.1
-
10
-
-
0003591219
-
-
Cambridge University Press
-
As the literature on the subject is enormous, an extensive list of references is impossible. See, for instance Fulling, S. Thesis, Princeton University (1972); Parker, L. and Fulling, S.: Phys. Rev, D 9 (1974), 341; Woodhouse, N.: Phys. Rev. Lett. 36 (1976), 999. For a recent survey, see Fulling, S.: Aspects of Quantum Field Theory in Curved Spacetime, Cambridge University Press, 1989.
-
(1989)
Aspects of Quantum Field Theory in Curved Spacetime
-
-
Fulling, S.1
-
13
-
-
0003001490
-
-
Floquet, G.: Ann. E.N.S. 12 (1883), 47; Ince, E. L.: Ordinary Differential Equations, Dover, New York, 1956; Hochstadt, H.: Differential Equations: A Modern Approach, Dover, New York, 1975, Chap. 5, pp. 191-197, see especially p. 193.
-
(1883)
Ann. E.N.S.
, vol.12
, pp. 47
-
-
Floquet, G.1
-
14
-
-
0004125699
-
-
Dover, New York
-
Floquet, G.: Ann. E.N.S. 12 (1883), 47; Ince, E. L.: Ordinary Differential Equations, Dover, New York, 1956; Hochstadt, H.: Differential Equations: A Modern Approach, Dover, New York, 1975, Chap. 5, pp. 191-197, see especially p. 193.
-
(1956)
Ordinary Differential Equations
-
-
Ince, E.L.1
-
15
-
-
1542443933
-
-
Dover, New York, Chap. 5, see especially p. 193
-
Floquet, G.: Ann. E.N.S. 12 (1883), 47; Ince, E. L.: Ordinary Differential Equations, Dover, New York, 1956; Hochstadt, H.: Differential Equations: A Modern Approach, Dover, New York, 1975, Chap. 5, pp. 191-197, see especially p. 193.
-
(1975)
Differential Equations: A Modern Approach
, pp. 191-197
-
-
Hochstadt, H.1
-
16
-
-
1542443939
-
-
In the conventional terminology of linear differential equations, 'stable, unstable' simply stand for bounded, unbounded
-
In the conventional terminology of linear differential equations, 'stable, unstable' simply stand for bounded, unbounded.
-
-
-
-
17
-
-
1542548507
-
-
note
-
It is clear that essential frequency may differ only by some multiple of 2π/T from the 'naive frequency' one could have defined by requiring 9 to stay within the interval [-π, +π]. We do not know for which analytic form of B(t), and for which values of μ and λ, it may happen that this difference vanishes. In particular, we cannot discard the possibility that naive and essential frequencies have opposite signs.
-
-
-
-
18
-
-
0001525304
-
-
originally in Russian, Kharkov 1892
-
Liapounoff, A. M.; Ann. Fac. Sci. Toulouse 9 (1907), 203-469, (originally in Russian, Kharkov 1892).
-
(1907)
Ann. Fac. Sci. Toulouse
, vol.9
, pp. 203-469
-
-
Liapounoff, A.M.1
|