메뉴 건너뛰기




Volumn 11, Issue 3, 1998, Pages 529-545

All possible chaotic dynamics can be approximated in three dimensions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0007337855     PISSN: 09517715     EISSN: None     Source Type: Journal    
DOI: 10.1088/0951-7715/11/3/007     Document Type: Article
Times cited : (28)

References (29)
  • 2
    • 29444435144 scopus 로고
    • ω-limit sets for Axiom A diffeomorphisms
    • Bowen R 1975 ω-limit sets for Axiom A diffeomorphisms J. Diff. Equ. 18 333-9
    • (1975) J. Diff. Equ. , vol.18 , pp. 333-339
    • Bowen, R.1
  • 5
    • 33646888362 scopus 로고
    • Rigorous computational shadowing of orbits of ordinary differential equations
    • Coomes B A, Koçak H and Palmer K J 1995 Rigorous computational shadowing of orbits of ordinary differential equations Numer. Math. 69 401-21
    • (1995) Numer. Math. , vol.69 , pp. 401-421
    • Coomes, B.A.1    Koçak, H.2    Palmer, K.J.3
  • 9
    • 0003169927 scopus 로고    scopus 로고
    • Finite fractal dimension and Hölder-Lipschitz parametrization
    • Foias C and Olson E J 1996 Finite fractal dimension and Hölder-Lipschitz parametrization Indiana Univ. Math. J. 45 603-16
    • (1996) Indiana Univ. Math. J. , vol.45 , pp. 603-616
    • Foias, C.1    Olson, E.J.2
  • 10
    • 0003324839 scopus 로고
    • Global bifurcations in flows
    • ed T Bedford and J Swift (Cambridge: Cambridge University Press)
    • Glendinning P 1988 Global bifurcations in flows New Directions in Dynamical Systems ed T Bedford and J Swift (Cambridge: Cambridge University Press) pp 120-49
    • (1988) New Directions in Dynamical Systems , pp. 120-149
    • Glendinning, P.1
  • 11
    • 0011444236 scopus 로고
    • Comportement à l'infini des solutions des équations de Navier-Stokes et propriété des ensembles fonctionnels invariantes (ou attracteurs)
    • Guillopé C 1982 Comportement à l'infini des solutions des équations de Navier-Stokes et propriété des ensembles fonctionnels invariantes (ou attracteurs) Ann. Inst. Fourier (Grenoble) 32 1-37
    • (1982) Ann. Inst. Fourier (Grenoble) , vol.32 , pp. 1-37
    • Guillopé, C.1
  • 14
    • 0000966077 scopus 로고
    • Finite approximation of the nonstationary Navier-Stokes problem, Part I: Regularity of solutions and second-order error estimates for spatial discretization
    • Heywood J G and Rannacher R (1982) Finite approximation of the nonstationary Navier-Stokes problem, Part I: Regularity of solutions and second-order error estimates for spatial discretization SIAM J. Numer. Anal. 19 275-311
    • (1982) SIAM J. Numer. Anal. , vol.19 , pp. 275-311
    • Heywood, J.G.1    Rannacher, R.2
  • 15
    • 0001142916 scopus 로고
    • Knots and orbit genealogies in nonlinear oscillators
    • ed T Bedford and J Swift (Cambridge: Cambridge University Press)
    • Holmes P 1988 Knots and orbit genealogies in nonlinear oscillators New Directions in Dynamical Systems ed T Bedford and J Swift (Cambridge: Cambridge University Press) pp 150-91
    • (1988) New Directions in Dynamical Systems , pp. 150-191
    • Holmes, P.1
  • 17
    • 3342957880 scopus 로고    scopus 로고
    • Determining asymptotic behaviour from the dynamics on attracting sets
    • to appear
    • Langa J A and Robinson J C 1996 Determining asymptotic behaviour from the dynamics on attracting sets J. Dyn. Differ. Equ. (to appear)
    • (1996) J. Dyn. Differ. Equ.
    • Langa, J.A.1    Robinson, J.C.2
  • 18
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz E 1963 Deterministic nonperiodic flow J. Atmos. Sci. 20 130-41
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.1
  • 19
    • 0003290175 scopus 로고
    • On the dimension of the compact invariant sets of certain nonlinear maps
    • Mañé R 1981 On the dimension of the compact invariant sets of certain nonlinear maps Springer Lecture Notes in Mathematics vol 898 pp 230-42
    • (1981) Springer Lecture Notes in Mathematics , vol.898 , pp. 230-242
    • Mañé, R.1
  • 20
    • 0000857725 scopus 로고    scopus 로고
    • The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors
    • Mielke A 1997 The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors Nonlinearity 10 199-222
    • (1997) Nonlinearity , vol.10 , pp. 199-222
    • Mielke, A.1
  • 21
    • 0039584618 scopus 로고    scopus 로고
    • Global attractors: Topology and finite-dimensional dynamics
    • to appear
    • Robinson J C 1997a Global attractors: topology and finite-dimensional dynamics J. Dyn. Differ. Equ. (to appear)
    • (1997) J. Dyn. Differ. Equ.
    • Robinson, J.C.1
  • 22
    • 3342940594 scopus 로고    scopus 로고
    • Accurate pictures of any attractor using three ordinary differential equations
    • submitted
    • Robinson J C 1997b Accurate pictures of any attractor using three ordinary differential equations Physica D (submitted)
    • (1997) Physica D
    • Robinson, J.C.1
  • 24
    • 49549126801 scopus 로고
    • An equation for continuous chaos
    • Rössler O E 1976 An equation for continuous chaos Phys. Lett. 57A 397-8
    • (1976) Phys. Lett. , vol.57 A , pp. 397-398
    • Rössler, O.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.