-
2
-
-
29444435144
-
ω-limit sets for Axiom A diffeomorphisms
-
Bowen R 1975 ω-limit sets for Axiom A diffeomorphisms J. Diff. Equ. 18 333-9
-
(1975)
J. Diff. Equ.
, vol.18
, pp. 333-339
-
-
Bowen, R.1
-
5
-
-
33646888362
-
Rigorous computational shadowing of orbits of ordinary differential equations
-
Coomes B A, Koçak H and Palmer K J 1995 Rigorous computational shadowing of orbits of ordinary differential equations Numer. Math. 69 401-21
-
(1995)
Numer. Math.
, vol.69
, pp. 401-421
-
-
Coomes, B.A.1
Koçak, H.2
Palmer, K.J.3
-
9
-
-
0003169927
-
Finite fractal dimension and Hölder-Lipschitz parametrization
-
Foias C and Olson E J 1996 Finite fractal dimension and Hölder-Lipschitz parametrization Indiana Univ. Math. J. 45 603-16
-
(1996)
Indiana Univ. Math. J.
, vol.45
, pp. 603-616
-
-
Foias, C.1
Olson, E.J.2
-
10
-
-
0003324839
-
Global bifurcations in flows
-
ed T Bedford and J Swift (Cambridge: Cambridge University Press)
-
Glendinning P 1988 Global bifurcations in flows New Directions in Dynamical Systems ed T Bedford and J Swift (Cambridge: Cambridge University Press) pp 120-49
-
(1988)
New Directions in Dynamical Systems
, pp. 120-149
-
-
Glendinning, P.1
-
11
-
-
0011444236
-
Comportement à l'infini des solutions des équations de Navier-Stokes et propriété des ensembles fonctionnels invariantes (ou attracteurs)
-
Guillopé C 1982 Comportement à l'infini des solutions des équations de Navier-Stokes et propriété des ensembles fonctionnels invariantes (ou attracteurs) Ann. Inst. Fourier (Grenoble) 32 1-37
-
(1982)
Ann. Inst. Fourier (Grenoble)
, vol.32
, pp. 1-37
-
-
Guillopé, C.1
-
14
-
-
0000966077
-
Finite approximation of the nonstationary Navier-Stokes problem, Part I: Regularity of solutions and second-order error estimates for spatial discretization
-
Heywood J G and Rannacher R (1982) Finite approximation of the nonstationary Navier-Stokes problem, Part I: Regularity of solutions and second-order error estimates for spatial discretization SIAM J. Numer. Anal. 19 275-311
-
(1982)
SIAM J. Numer. Anal.
, vol.19
, pp. 275-311
-
-
Heywood, J.G.1
Rannacher, R.2
-
15
-
-
0001142916
-
Knots and orbit genealogies in nonlinear oscillators
-
ed T Bedford and J Swift (Cambridge: Cambridge University Press)
-
Holmes P 1988 Knots and orbit genealogies in nonlinear oscillators New Directions in Dynamical Systems ed T Bedford and J Swift (Cambridge: Cambridge University Press) pp 150-91
-
(1988)
New Directions in Dynamical Systems
, pp. 150-191
-
-
Holmes, P.1
-
17
-
-
3342957880
-
Determining asymptotic behaviour from the dynamics on attracting sets
-
to appear
-
Langa J A and Robinson J C 1996 Determining asymptotic behaviour from the dynamics on attracting sets J. Dyn. Differ. Equ. (to appear)
-
(1996)
J. Dyn. Differ. Equ.
-
-
Langa, J.A.1
Robinson, J.C.2
-
18
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz E 1963 Deterministic nonperiodic flow J. Atmos. Sci. 20 130-41
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.1
-
19
-
-
0003290175
-
On the dimension of the compact invariant sets of certain nonlinear maps
-
Mañé R 1981 On the dimension of the compact invariant sets of certain nonlinear maps Springer Lecture Notes in Mathematics vol 898 pp 230-42
-
(1981)
Springer Lecture Notes in Mathematics
, vol.898
, pp. 230-242
-
-
Mañé, R.1
-
20
-
-
0000857725
-
The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors
-
Mielke A 1997 The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors Nonlinearity 10 199-222
-
(1997)
Nonlinearity
, vol.10
, pp. 199-222
-
-
Mielke, A.1
-
21
-
-
0039584618
-
Global attractors: Topology and finite-dimensional dynamics
-
to appear
-
Robinson J C 1997a Global attractors: topology and finite-dimensional dynamics J. Dyn. Differ. Equ. (to appear)
-
(1997)
J. Dyn. Differ. Equ.
-
-
Robinson, J.C.1
-
22
-
-
3342940594
-
Accurate pictures of any attractor using three ordinary differential equations
-
submitted
-
Robinson J C 1997b Accurate pictures of any attractor using three ordinary differential equations Physica D (submitted)
-
(1997)
Physica D
-
-
Robinson, J.C.1
-
24
-
-
49549126801
-
An equation for continuous chaos
-
Rössler O E 1976 An equation for continuous chaos Phys. Lett. 57A 397-8
-
(1976)
Phys. Lett.
, vol.57 A
, pp. 397-398
-
-
Rössler, O.E.1
|