-
1
-
-
85039022160
-
-
For a review, see R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam 1982)
-
For a review, see R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam 1982).
-
-
-
-
3
-
-
0011685961
-
-
Plenum Press, New York, K. Dietz
-
L. Alvarez-Gaumé, in Supersymmetry, edited by K. Dietz (Plenum Press, New York, 1984).
-
(1984)
Supersymmetry
-
-
Alvarez-Gaumé, L.1
-
6
-
-
0031584006
-
-
At the one-loop level mode regularization reproduces these results, but the energy cutoff does not; see A. Rebhan and P. van Nieuwenhuizen, Nucl. Phys. B508, 449 (1997).
-
(1997)
Nucl. Phys.
, vol.B508
, pp. 449
-
-
Rebhan, A.1
van Nieuwenhuizen, P.2
-
11
-
-
36149005338
-
-
The latter authors show that Weyl ordering of the result of the first author leads to the (Formula presented) in Eq. (3). Yang-Mills theory in the Coulomb gauge also contains a (Formula presented); see J. Schwinger, Phys. Rev. 127,324 (1962)
-
(1962)
Phys. Rev.
, vol.127
, pp. 324
-
-
Schwinger, J.1
-
14
-
-
26744432172
-
-
J. de Boer, B. Peeters, K. Skenderis, and P. van Nieuwenhuizen, Nucl. Phys. B446, 24 (1995)
-
(1995)
Nucl. Phys.
, vol.B446
, pp. 24
-
-
de Boer, J.1
Peeters, B.2
Skenderis, K.3
van Nieuwenhuizen, P.4
-
16
-
-
0000411831
-
-
A. Diaz, W. Troost, A. van Proeyen, and P. van Nieuwenhuizen, Int. J. Mod. Phys. A 4, 3959 (1989)
-
(1989)
Int. J. Mod. Phys. A
, vol.4
, pp. 3959
-
-
Diaz, A.1
Troost, W.2
van Proeyen, A.3
van Nieuwenhuizen, P.4
-
17
-
-
0000803105
-
-
M. Hatsuda, W. Troost, A. van Proeyen, and P. van Nieuwenhuizen, Nucl. Phys. B335, 166 (1990)
-
(1990)
Nucl. Phys.
, vol.B335
, pp. 166
-
-
Hatsuda, M.1
Troost, W.2
van Proeyen, A.3
van Nieuwenhuizen, P.4
-
22
-
-
0000985141
-
-
C. Bernard and A. Duncan, Phys. Rev. D 11, 848 (1975). These authors verify Matthews’ theorem by a path integral approach to second order in the coupling constant. However, they assume that all factors (Formula presented) which appear in their derivation may be set equal to zero. They also study as an example the Lagrangian (Formula presented). Again they can only prove Matthews’ theorem if they set all (Formula presented) terms to zero. It would be satisfying if a path integral proof could be given without assuming that (Formula presented) is zero. Conceivably, careful discretization as well as the new ghosts of 34 are required.
-
(1975)
Phys. Rev. D
, vol.11
, pp. 848
-
-
Bernard, C.1
Duncan, A.2
|