-
1
-
-
0041484619
-
Instabilities in periodic planetary-type orbits
-
ed. V. Szebehely. Reidel, Dordrecht
-
Hadjidemetriou, J. D. (1978) Instabilities in periodic planetary-type orbits. Instabilities in Dynamical Systems, ed. V. Szebehely. Reidel, Dordrecht.
-
(1978)
Instabilities in Dynamical Systems
-
-
Hadjidemetriou, J.D.1
-
2
-
-
0041078921
-
Hill regions for the general three-body problem
-
Marchal, C. and Saari, D. G. (1975) Hill regions for the general three-body problem. Celest. Mech. 12, 115.
-
(1975)
Celest. Mech.
, vol.12
, pp. 115
-
-
Marchal, C.1
Saari, D.G.2
-
3
-
-
0011448103
-
On the stability of hierarchical four-body systems
-
Milani, A. and Nobili, A. M. (1983) On the stability of hierarchical four-body systems. Celest. Mech. 31, 241.
-
(1983)
Celest. Mech.
, vol.31
, pp. 241
-
-
Milani, A.1
Nobili, A.M.2
-
4
-
-
10844267769
-
Empirical stability criteria in the many-body problem
-
ed. V. Szebehely. Reidel, Dordrecht
-
Roy, A. E. (1979) Empirical stability criteria in the many-body problem. Instabilities in Dynamical Systems, ed. V. Szebehely. Reidel, Dordrecht.
-
(1979)
Instabilities in Dynamical Systems
-
-
Roy, A.E.1
-
6
-
-
0001398086
-
On the occurrence of commensurable mean motions in the solar system II. The mirror theorem
-
Roy, A. E. and Ovenden, M. W. (1955) On the occurrence of commensurable mean motions in the Solar System II. The mirror theorem. Mon. Not. Roy. Astron. Soc. 115, 296.
-
(1955)
Mon. Not. Roy. Astron. Soc.
, vol.115
, pp. 296
-
-
Roy, A.E.1
Ovenden, M.W.2
-
7
-
-
4243942664
-
The use of the energy and angular momentum integrals to obtain a stability criterion in the general hierarchical three-body problem
-
Roy, A. E., Carusi, A., Valsecchi, G. and Walker, I. W. (1984) The use of the energy and angular momentum integrals to obtain a stability criterion in the general hierarchical three-body problem. Astronomy and Astrophysics 141, 25.
-
(1984)
Astronomy and Astrophysics
, vol.141
, pp. 25
-
-
Roy, A.E.1
Carusi, A.2
Valsecchi, G.3
Walker, I.W.4
-
8
-
-
84856539343
-
Studies in the stability of hierarchical dynamical systems
-
ed. V. Szebehely. Reidel, Dordrecht
-
Roy, A. E., Walker, I. W. and McDonald, A. J. C. (1985) Studies in the stability of hierarchical dynamical systems. Stability of the Solar System and its Minor Natural and Artificial Bodies, ed. V. Szebehely. Reidel, Dordrecht.
-
(1985)
Stability of the Solar System and Its Minor Natural and Artificial Bodies
-
-
Roy, A.E.1
Walker, I.W.2
McDonald, A.J.C.3
-
10
-
-
0000527228
-
Stability of classical triplets and of their hierarchy
-
Szebehely, V. and Zare, K. (1977) Stability of classical triplets and of their hierarchy. Astronomy and Astrophysics 58, 145.
-
(1977)
Astronomy and Astrophysics
, vol.58
, pp. 145
-
-
Szebehely, V.1
Zare, K.2
-
11
-
-
0042486447
-
The effect of orbital eccentricities on the shape of the hill-type analytical stability surfaces in the general three-body problem
-
Valsecchi, G., Carusi, A. and Roy, A. E. (1984) The effect of orbital eccentricities on the shape of the Hill-type analytical stability surfaces in the general three-body problem. Celest. Mech. 32, 217.
-
(1984)
Celest. Mech.
, vol.32
, pp. 217
-
-
Valsecchi, G.1
Carusi, A.2
Roy, A.E.3
-
12
-
-
0042486444
-
Stability criteria in many-body systems IV. Empirical stability parameters for general hierarchical dynamical systems
-
Walker, I. W. (1983) Stability criteria in many-body systems IV. Empirical stability parameters for general hierarchical dynamical systems. Celest. Mech. 29, 149.
-
(1983)
Celest. Mech.
, vol.29
, pp. 149
-
-
Walker, I.W.1
-
13
-
-
0041985569
-
Stability criteria in many-body systems I. An empirical stability criterion for co-rotational three-body systems
-
Walker, I. W., Emslie, A. G. and Roy, A. E. (1980) Stability criteria in many-body systems I. An empirical stability criterion for co-rotational three-body systems. Celest. Mech. 22, 371.
-
(1980)
Celest. Mech.
, vol.22
, pp. 371
-
-
Walker, I.W.1
Emslie, A.G.2
Roy, A.E.3
-
14
-
-
0042987243
-
Stability criteria in many-body systems III. Empirical stability regions for corotational, coplanar, hierarchical three-body systems
-
Walker, I. W. and Roy, A. E. (1983a) Stability criteria in many-body systems III. Empirical stability regions for corotational, coplanar, hierarchical three-body systems. Celest. Mech. 29, 117.
-
(1983)
Celest. Mech.
, vol.29
, pp. 117
-
-
Walker, I.W.1
Roy, A.E.2
-
15
-
-
0042486449
-
Stability criteria in many-body systems V. On the totality of possible hierarchical general four-body systems
-
Walker, I. W. and Roy, A. E. (1983b) Stability criteria in many-body systems V. On the totality of possible hierarchical general four-body systems. Celest. Mech. 29, 267.
-
(1983)
Celest. Mech.
, vol.29
, pp. 267
-
-
Walker, I.W.1
Roy, A.E.2
-
16
-
-
0009125478
-
Bifurcation points in the planar problem of three bodies
-
Zare, K. ( 1977) Bifurcation points in the planar problem of three bodies. Celest. Mech. 16, 35.
-
(1977)
Celest. Mech.
, vol.16
, pp. 35
-
-
Zare, K.1
|