메뉴 건너뛰기




Volumn 2, Issue WINTER MEETING, 2001, Pages 528-532

Improving the prediction of radial basis function networks for power systems

Author keywords

Market clearing; Network pruning; Price forecasting; RBF networks

Indexed keywords

DEREGULATION; ELECTRIC INDUSTRY; FORECASTING; MARKETING; RADIAL BASIS FUNCTION NETWORKS;

EID: 0005968229     PISSN: 21608555     EISSN: 21608563     Source Type: Journal    
DOI: 10.1109/PESW.2001.916903     Document Type: Article
Times cited : (4)

References (16)
  • 1
    • 0001683814 scopus 로고
    • Layered neural networks with gaussian hidden units as universal approximators
    • E. J. Hartman, J. D. Keeler, and J. M. Kawalski, “Layered Neural Networks with Gaussian Hidden Units as Universal Approximators, ” Neural Networks, vol. 35, no. 2, 1990, pp. 210-215.
    • (1990) Neural Networks , vol.35 , Issue.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.D.2    Kawalski, J.M.3
  • 2
    • 0000588294 scopus 로고
    • Improving the generalization properties of radial basis function neural networks
    • C. M. Bishop, “Improving the Generalization Properties of Radial Basis Function Neural Networks, ” Neural Computation, vol. 3, 1991, pp. 579-558.
    • (1991) Neural Computation , vol.3 , pp. 579-558
    • Bishop, C.M.1
  • 3
    • 0027659357 scopus 로고
    • Curvature-driven smoothing: A learning algorithm for feedforward networks
    • C. M. Bishop, “Curvature-driven Smoothing: A Learning Algorithm for Feedforward Networks, ” IEEE transactions on Neural Networks, vol. 4, 1993, pp. 882-884.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 882-884
    • Bishop, C.M.1
  • 5
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • C. M. Bishop, “Training with Noise Is Equivalent to Tikhonov Regularization, ” Neural Computation, vol. 7, 1995, pp. 108-116.
    • (1995) Neural Computation , vol.7 , pp. 108-116
    • Bishop, C.M.1
  • 6
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • J. Platt, “A Resource-Allocating Network for Function Interpolation, ” Neural Computation, vol. 3, 1991, pp. 213-225.
    • (1991) Neural Computation , vol.3 , pp. 213-225
    • Platt, J.1
  • 7
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • V. Kadirkamanathan, “A Function Estimation Approach to Sequential Learning with Neural Networks, ” Neural Computation, vol. 5, 1993, pp. 954-975.
    • (1993) Neural Computation , vol.5 , pp. 954-975
    • Kadirkamanathan, V.1
  • 8
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • Y. Lu, N. Sundararajan and P. Saratchandran, “A Sequential Learning Scheme for Function Approximation Using Minimal Radial Basis Function Neural Networks, ” Neural Computation, vol. 9, 1997, pp. 461-478.
    • (1997) Neural Computation , vol.9 , pp. 461-478
    • Lu, Y.1    Sundararajan, N.2    Saratchandran, P.3
  • 9
    • 0032053321 scopus 로고    scopus 로고
    • Dual-orthogonal radial basis function networks for nonlinear time series prediction
    • Apr
    • S. A. Billings and X. Hong, “Dual-orthogonal Radial Basis Function Networks for Nonlinear Time Series Prediction, ” Neural Networks, vol. 11(3), Apr. 1998, pp. 479-493.
    • (1998) Neural Networks , vol.11 , Issue.3 , pp. 479-493
    • Billings, S.A.1    Hong, X.2
  • 10
    • 0028517370 scopus 로고    scopus 로고
    • Predicting pilot look-angle with a radial basis function network
    • Oct
    • N. E. Longinow, “Predicting Pilot Look-angle with a Radial Basis Function Network, ” IEEE Transactions on Systems, Man, and Cybernetics, vol. 24(10), Oct. 1998, pp. 1511-1518.
    • (1998) IEEE Transactions on Systems, Man, and Cybernetics , vol.24 , Issue.10 , pp. 1511-1518
    • Longinow, N.E.1
  • 11
    • 0031762513 scopus 로고    scopus 로고
    • Estimation of spatiotemporal neural activity using radial basis function networks
    • Dec
    • R. W. Anderson, S. Das and E. L. Keller, “Estimation of Spatiotemporal Neural Activity Using Radial Basis Function Networks, ” Journal of Computational Neuroscience, vol. 5(4), Dec. 1998, pp. 421-441.
    • (1998) Journal of Computational Neuroscience , vol.5 , Issue.4 , pp. 421-441
    • Anderson, R.W.1    Das, S.2    Keller, E.L.3
  • 12
    • 0031821786 scopus 로고    scopus 로고
    • Improved diagnosis of breast implant rupture with sonographic findings and artificial neural networks
    • Academic-Radiology
    • L. A. Venta, L. M. Salchenberger and E. R. Venta, “Improved Diagnosis of Breast Implant Rupture with Sonographic Findings and Artificial Neural Networks, ” Academic-Radiology, 1998, pp. 238-244.
    • (1998) , pp. 238-244
    • Venta, L.A.1    Salchenberger, L.M.2    Venta, E.R.3
  • 16
    • 0026858102 scopus 로고    scopus 로고
    • Noise injection into inputs in back-propagation learning
    • May/June
    • K. Matsuoka, “Noise Injection into Inputs in Back-Propagation Learning, ” IEEE Transaction on System, Man, and Cybernetics, vol. 22, No 3, May/June 1997, pp. 436-440.
    • (1997) IEEE Transaction on System, Man, and Cybernetics , vol.22 , Issue.3 , pp. 436-440
    • Matsuoka, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.