메뉴 건너뛰기




Volumn 4, Issue 1, 2000, Pages 120-127

A New Approach To Speech Coding: the Neural Predictive Coding

Author keywords

Discriminant feature extraction (DFE); Neural networks; Non linear predictive coding; Phonemes recognition; Speech signal coding

Indexed keywords

AUDIO SIGNAL PROCESSING; CODES (SYMBOLS); NETWORK CODING; SPEECH COMMUNICATION; SPEECH PROCESSING; SPEECH RECOGNITION;

EID: 0005855325     PISSN: 13430130     EISSN: 18838014     Source Type: Journal    
DOI: 10.20965/jaciii.2000.p0120     Document Type: Article
Times cited : (9)

References (27)
  • 1
    • 0027221210 scopus 로고
    • Feature extraction based on minimum classification error/generalized probabilistic descent method
    • A. Biem and S. Katagiri. Feature extraction based on minimum classification error/generalized probabilistic descent method. In Proceedings of Internationa! Conference on Signal and Speech Processing, volume 2, pages 275-278, 1993.
    • (1993) Proceedings of Internationa! Conference on Signal and Speech Processing , vol.2 , pp. 275-278
    • Biem, A.1    Katagiri, S.2
  • 3
    • 0019053271 scopus 로고
    • Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
    • S. B. Davis and P. Melmerstein. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustic, Speech and Signal Processing, 28(4):357-376, 1980.
    • (1980) IEEE Transactions on Acoustic, Speech and Signal Processing , vol.28 , Issue.4 , pp. 357-376
    • Davis, S. B.1    Melmerstein, P.2
  • 4
    • 0030379378 scopus 로고    scopus 로고
    • An application of minimum classification error to feature space transformations for speech recognition
    • A. de la Torre, A, M, Peinado, A. J. Rubio, V. E. Sanchez, and J. E. Diaz. An application of minimum classification error to feature space transformations for speech recognition. Speech Communication, 20:273-290, 1996.
    • (1996) Speech Communication , vol.20 , pp. 273-290
    • de la Torre, A.1    M, M2    Peinado3    Rubio, A. J.4    Sanchez, V. E.5    Diaz, J. E.6
  • 6
    • 85168775964 scopus 로고
    • T Qgawa» S. Kitazawa, and S. Dos hit a. Phoneme recognition by combining hayesian linear discriminations of selected pairs of classes
    • T. Kawahara, T Qgawa» S. Kitazawa, and S. Dos hit a. Phoneme recognition by combining hayesian linear discriminations of selected pairs of classes. In Proceedings of international Conference on Signal and Speech Processings page 78, 1990
    • (1990) Proceedings of international Conference on Signal and Speech Processings , pp. 78
    • Kawahara, T.1
  • 11
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik. Multilayer feedforward networks are universal approximators. Neural Networks, 2:359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1
  • 13
    • 0026982122 scopus 로고
    • Discriminative Learning for minimum error classification
    • december
    • H. H. Juang and S. Ratagiri. Discriminative Learning for minimum error classification. IEEE Transactions on Signal Processing, 40(12): 3043-3054, december 1992.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.12 , pp. 3043-3054
    • Juang, H. H.1    Ratagiri, S.2
  • 14
    • 0023983407 scopus 로고
    • The 'neural' phonetic typewriter
    • T Kohonen, The 'neural' phonetic typewriter. IEEE Computer, 21(3), 1988
    • (1988) IEEE Computer , vol.21 , Issue.3
    • Kohonen, T1
  • 15
    • 0021617162 scopus 로고
    • Phonotopic maps insightful representation of phonological features for speech recognition
    • and al
    • T. Kohonen and al. Phonotopic maps insightful representation of phonological features for speech recognition. In Proceedings ofInternational Conference on Pattern Recognition, volume 7, 1984.
    • (1984) Proceedings ofInternational Conference on Pattern Recognition , vol.7
    • Kohonen, T.1
  • 16
    • 0025254722 scopus 로고
    • A time-delay neural network architecture for isolated word recognition
    • G.E. H in ton
    • K. J, Lang, A. H. Waibel, and G.E. H in ton. A time-delay neural network architecture for isolated word recognition, Neural Networks, 3:23-43. 1990.
    • (1990) Neural Networks , vol.3 , pp. 23-43
    • Lang, K. J1    Waibel, A. H.2
  • 17
    • 0003645482 scopus 로고
    • Nonlinear signal processing using neural networks: Prediction;ind system modelling
    • Internal Report, Los Alamos National Laboratory. July
    • A. Lapedes and R Farber. Nonlinear signal processing using neural networks: Prediction;ind system modelling. Internal Report, Los Alamos National Laboratory. July 1987.
    • (1987)
    • Lapedes, A.1    Farber, R2
  • 19
    • 0022149626 scopus 로고
    • Structural methods in automatic speech recognition
    • July
    • S. B. Lcvinson. Structural methods in automatic speech recognition. Procedings of the IEEE. 73(11): 1625-1650, July 1987.
    • (1987) Procedings of the IEEE , vol.73 , Issue.11 , pp. 1625-1650
    • Lcvinson, S. B.1
  • 20
  • 21
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G, E. Hmton, and R.J. Williams. Learning representations by back-propagating errors. Nature, 323:533-536, 1986
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D. E.1    Hmton, E.2    Williams, R.J.3
  • 23
    • 0025488663 scopus 로고
    • 30 years of adaptative neural networks: Pcrccptron, madalinc and backpropagation
    • B. Widrow. 30 years of adaptative neural networks: Pcrccptron, madalinc and backpropagation. Proc. of the IEEE, 78:1415-1442, 1990.
    • (1990) Proc. of the IEEE , vol.78 , pp. 1415-1442
    • Widrow, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.