메뉴 건너뛰기




Volumn 14, Issue 1, 2002, Pages 207-241

Geometry of Heteroclinic Cascades in Scalar Parabolic Differential Equations

Author keywords

Attractors; Heteroclinic orbits; Meandric permutations; Morse smale systems; Nodal properties; Scalar semilinear equations

Indexed keywords


EID: 0005656141     PISSN: 10407294     EISSN: 15729222     Source Type: Journal    
DOI: 10.1023/A:1012967428328     Document Type: Article
Times cited : (15)

References (31)
  • 1
    • 0000329412 scopus 로고
    • The Morse-Smale property for a semilinear parabolic equation
    • Angenent, S. (1986). The Morse-Smale property for a semilinear parabolic equation. J. Differential Equations 62, 427-4142.
    • (1986) J. Differential Equations , vol.62 , pp. 427-4142
    • Angenent, S.1
  • 2
    • 84942222028 scopus 로고
    • The zero set of a solution of a parabolic equation
    • Angenent, S. (1988) The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390, 79-96.
    • (1988) J. Reine Angew. Math. , vol.390 , pp. 79-96
    • Angenent, S.1
  • 3
    • 0002626529 scopus 로고
    • 4, hyperbolicity and projective topology
    • 4, hyperbolicity and projective topology. Siberian Math. J. 29, 36-417.
    • (1988) Siberian Math. J. , vol.29 , pp. 36-417
    • Arnol'D, V.I.1
  • 4
    • 0000605470 scopus 로고
    • Numbers of zeros on invariant manifolds in reaction-diffusion equations
    • Brunovsky, P., and Fiedler, B. (1986). Numbers of zeros on invariant manifolds in reaction-diffusion equations. Nonlinear Anal. 10, 427-4442.
    • (1986) Nonlinear Anal. , vol.10 , pp. 427-4442
    • Brunovsky, P.1    Fiedler, B.2
  • 5
    • 0002264165 scopus 로고
    • Connecting orbits in scalar reaction-diffusion equations
    • Brunovsky, P., and Fiedler, B. (1988). Connecting orbits in scalar reaction-diffusion equations. Dynam. Report. 1, 57-89.
    • (1988) Dynam. Report. , vol.1 , pp. 57-89
    • Brunovsky, P.1    Fiedler, B.2
  • 6
    • 0001168397 scopus 로고
    • Connecting orbits in scalar reaction-diffusion equations II: The complete solution
    • Brunovsky, P., and Fiedler, B. (1989). Connecting orbits in scalar reaction-diffusion equations II: The complete solution. J. Differential Equations 81, 106-135.
    • (1989) J. Differential Equations , vol.81 , pp. 106-135
    • Brunovsky, P.1    Fiedler, B.2
  • 8
    • 0016345113 scopus 로고
    • A bifurcation problem for a nonlinear parabolic problem
    • Chafee, N., and Infante, E. (1974). A bifurcation problem for a nonlinear parabolic problem. J. Appl. Anal. 4, 17-37.
    • (1974) J. Appl. Anal. , vol.4 , pp. 17-37
    • Chafee, N.1    Infante, E.2
  • 9
    • 0030577735 scopus 로고    scopus 로고
    • Heteroclinic orbits of semilinear parabolic equations
    • Fiedler, B., and Rocha, C. (1996). Heteroclinic orbits of semilinear parabolic equations. J. Differential Equations 125 239-281.
    • (1996) J. Differential Equations , vol.125 , pp. 239-281
    • Fiedler, B.1    Rocha, C.2
  • 10
    • 22844455201 scopus 로고    scopus 로고
    • Orbit equivalence of global attractors of semilinear parabolic equations
    • Fiedler, B., and Rocha, C. (2000). Orbit equivalence of global attractors of semilinear parabolic equations. Trans. Amer. Math. Soc. 352(1), 257-284.
    • (2000) Trans. Amer. Math. Soc. , vol.352 , Issue.1 , pp. 257-284
    • Fiedler, B.1    Rocha, C.2
  • 11
    • 0033543056 scopus 로고    scopus 로고
    • Realization of meander permutations by boundary value problems
    • Fiedler, B., and Rocha, C. (1999). Realization of meander permutations by boundary value problems. J. Differential Equations 156(2), 282-308
    • (1999) J. Differential Equations , vol.156 , Issue.2 , pp. 282-308
    • Fiedler, B.1    Rocha, C.2
  • 12
    • 0001794246 scopus 로고
    • Global attractors of one-dimensional parabolic equations: Sixteen examples
    • Fiedler, B. (1994). Global attractors of one-dimensional parabolic equations: Sixteen examples. Tatra Ml. Math. Publ. 4, 67-92.
    • (1994) Tatra Ml. Math. Publ. , vol.4 , pp. 67-92
    • Fiedler, B.1
  • 13
    • 0002646555 scopus 로고    scopus 로고
    • Do global attractors depend on boundary conditions?
    • Fiedler, B. (1996). Do global attractors depend on boundary conditions? Doc. Math. 1, 215-228.
    • (1996) Doc. Math. , vol.1 , pp. 215-228
    • Fiedler, B.1
  • 14
    • 0002238002 scopus 로고
    • A permutation related to the dynamics of a scalar parabolic PDE
    • Fusco, G., and Rocha, C. (1991). A permutation related to the dynamics of a scalar parabolic PDE. J. Differential Equations 91, 111-137.
    • (1991) J. Differential Equations , vol.91 , pp. 111-137
    • Fusco, G.1    Rocha, C.2
  • 15
    • 0002627286 scopus 로고
    • Asymptotic behavior and dynamics in infinite dimensions
    • Hale, J. K. (1985). Asymptotic behavior and dynamics in infinite dimensions. Res. Notes in Math. 132, 1-41.
    • (1985) Res. Notes in Math. , vol.132 , pp. 1-41
    • Hale, J.K.1
  • 16
    • 0003293929 scopus 로고
    • Asymptotic behavior of dissipative systems
    • AMS, Providence.
    • Hale, J. K. (1988). Asymptotic behavior of dissipative systems, Math. Surveys and Monographs, Vol. 25, AMS, Providence.
    • (1988) Math. Surveys and Monographs , vol.25
    • Hale, J.K.1
  • 18
    • 0003304963 scopus 로고
    • Geometric theory of semilinear parabolic equations
    • Springer-Verlag, New York.
    • Henry, D. (1981). Geometric theory of semilinear parabolic equations, Led. Notes Math., Vol. 840, Springer-Verlag, New York.
    • (1981) Led. Notes Math. , vol.840
    • Henry, D.1
  • 19
    • 46549093257 scopus 로고
    • Some infinite dimensional Morse-Smale systems defined by parabolic equations
    • Henry, D. (1985). Some infinite dimensional Morse-Smale systems defined by parabolic equations. J. Differential Equations 59, 165-205.
    • (1985) J. Differential Equations , vol.59 , pp. 165-205
    • Henry, D.1
  • 20
    • 0000171235 scopus 로고
    • Explicit Construction of an Inertial Manifold for a Reaction Diffusion Equation
    • Jolly, M. S. (1989). Explicit Construction of an Inertial Manifold for a Reaction Diffusion Equation. J. Differential Equations 78, 220-261.
    • (1989) J. Differential Equations , vol.78 , pp. 220-261
    • Jolly, M.S.1
  • 21
    • 0011506556 scopus 로고
    • Folding a strip of stamps
    • Koehler, J. E. (1968). Folding a strip of stamps. J. Combin. Theory 5, 135-152.
    • (1968) J. Combin. Theory , vol.5 , pp. 135-152
    • Koehler, J.E.1
  • 23
    • 0001602838 scopus 로고
    • Plane and projective meanders
    • Lando, S. K., and Zvonkin, A. K. (1993). Plane and projective meanders. Theor. Compul. Sci. 117,227-241.
    • (1993) Theor. Compul. Sci. , vol.117 , pp. 227-241
    • Lando, S.K.1    Zvonkin, A.K.2
  • 24
    • 0000657925 scopus 로고
    • Nonincrease of the lap-number of a solution for a one-dimensional semi-linear parabolic equation
    • Matano, H. (1982). Nonincrease of the lap-number of a solution for a one-dimensional semi-linear parabolic equation. J. Fac. Sci. Univ. Tokyo Sec. IA 29, 401-4441.
    • (1982) J. Fac. Sci. Univ. Tokyo Sec. IA , vol.29 , pp. 401-4441
    • Matano, H.1
  • 26
    • 65749319455 scopus 로고
    • Sur un théorème de géométrie
    • Poincaré, H. (1912). Sur un théorème de géométrie. Rend. Cire. Mal. Palermo 33, 375-4107.
    • (1912) Rend. Cire. Mal. Palermo , vol.33 , pp. 375-4107
    • Poincaré, H.1
  • 27
    • 0001032545 scopus 로고
    • Properties of the attractor of a scalar parabolic PDE
    • Rocha, C. (1991). Properties of the attractor of a scalar parabolic PDE. J. Dynam. Differential Equations 3(4), 575-591.
    • (1991) J. Dynam. Differential Equations , vol.3 , Issue.4 , pp. 575-591
    • Rocha, C.1
  • 28
    • 38249027159 scopus 로고
    • Examples of attractors in scalar reaction-diffusion equations
    • Rocha, C. (1988). Examples of attractors in scalar reaction-diffusion equations. J. Differential Equations73, 178-195.
    • (1988) J. Differential Equations , vol.73 , pp. 178-195
    • Rocha, C.1
  • 29
    • 0009186160 scopus 로고
    • Planar permutations defined by two intersecting Jordan curves
    • Academic Press, London.
    • Rosenstiehl, P. (1984). Planar permutations defined by two intersecting Jordan curves. In Graph Theory and Combinatorics, Academic Press, London.
    • (1984) Graph Theory and Combinatorics
    • Rosenstiehl, P.1
  • 31
    • 0001883857 scopus 로고
    • Stabilisation of solutions of BVP for a second order parabolic equation with one space variable
    • Zelenyak, T. J. (1968). Stabilisation of solutions of BVP for a second order parabolic equation with one space variable. Differential Equations 4, 17-22.
    • (1968) Differential Equations , vol.4 , pp. 17-22
    • Zelenyak, T.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.