-
2
-
-
84967713030
-
Near coherence of filters II: Applications to operator ideals, the Stone-Çech remainder of a half-line, order ideal of sequences, and slenderness of groups
-
Blass A. Near coherence of filters II: Applications to operator ideals, the Stone-Çech remainder of a half-line, order ideal of sequences, and slenderness of groups. Trans. Amer. Math. Soc. 300:1987;557-581.
-
(1987)
Trans. Amer. Math. Soc.
, vol.300
, pp. 557-581
-
-
Blass, A.1
-
5
-
-
0001276042
-
A new proof that analytic sets are Ramsey
-
Ellentuck E. A new proof that analytic sets are Ramsey. J. Symbolic Logic. 38:1974;163-165.
-
(1974)
J. Symbolic Logic
, vol.38
, pp. 163-165
-
-
Ellentuck, E.1
-
7
-
-
0040745676
-
Semiselective coideals
-
Farah I. Semiselective coideals. Mathematika. 1998.
-
(1998)
Mathematika
-
-
Farah, I.1
-
8
-
-
84968464988
-
Homogeneity for open partitions of pairs of reals
-
Feng Qi. Homogeneity for open partitions of pairs of reals. Trans. Amer. Math. Soc. 339:1993;659-684.
-
(1993)
Trans. Amer. Math. Soc.
, vol.339
, pp. 659-684
-
-
Feng Qi1
-
9
-
-
0011607638
-
Universally Baire sets of reals
-
H. Judah, W. Just, & H. Woodin. Berlin/New York: Springer-Verlag
-
Feng Qi, Magidor M., Woodin W. H. Universally Baire sets of reals. Judah H., Just W., Woodin H. Set Theory of the Continuum. 1992;Springer-Verlag, Berlin/New York.
-
(1992)
Set Theory of the Continuum
-
-
Feng Qi1
Magidor, M.2
Woodin, W.H.3
-
10
-
-
0001038366
-
Martin's Maximum saturated ideals and non-regular ultrafilters, Part I
-
Foreman M., Magidor M., Shelah S. Martin's Maximum saturated ideals and non-regular ultrafilters, Part I. Ann. of Math. 127:1988;1-47.
-
(1988)
Ann. of Math.
, vol.127
, pp. 1-47
-
-
Foreman, M.1
Magidor, M.2
Shelah, S.3
-
12
-
-
0039560292
-
-
Oxford University
-
S.-A. Jalali-Naini, Oxford University, 1976.
-
(1976)
-
-
Jalali-Naini, S.-A.1
-
13
-
-
0004289448
-
-
San Diego: Academic Press
-
Jech T. Set Theory. 1978;Academic Press, San Diego.
-
(1978)
Set Theory
-
-
Jech, T.1
-
14
-
-
0013345017
-
On a notion of smallness for subsets of the Baire space
-
Kechris A. S. On a notion of smallness for subsets of the Baire space. Trans. Amer. Math. Soc. 229:1977;191-207.
-
(1977)
Trans. Amer. Math. Soc.
, vol.229
, pp. 191-207
-
-
Kechris, A.S.1
-
16
-
-
0007007744
-
Borel partitions on products of finite sets
-
Llopis J., Todorcevic S. Borel partitions on products of finite sets. Acta Cient. Venezolana. 47:1996;85-88.
-
(1996)
Acta Cient. Venezolana
, vol.47
, pp. 85-88
-
-
Llopis, J.1
Todorcevic, S.2
-
22
-
-
38249024521
-
Infinite combinatorics and definability
-
Miller A. W. Infinite combinatorics and definability. Ann. Pure Appl. Logic. 41:1989;179-203.
-
(1989)
Ann. Pure Appl. Logic
, vol.41
, pp. 179-203
-
-
Miller, A.W.1
-
23
-
-
84972266486
-
Countable partitions of product spaces
-
Moran G., Strauss D. Countable partitions of product spaces. Mathematika. 27:1980;213-224.
-
(1980)
Mathematika
, vol.27
, pp. 213-224
-
-
Moran, G.1
Strauss, D.2
-
24
-
-
0001700538
-
Independent sets in topological algebra
-
Mycielski J. Independent sets in topological algebra. Fund. Math. 55:1964;159-197.
-
(1964)
Fund. Math.
, vol.55
, pp. 159-197
-
-
Mycielski, J.1
-
27
-
-
0038363112
-
Parametrized Ellentuck theorem
-
Pawlikowski J. Parametrized Ellentuck theorem. Topology Appl. 37:1990;65-73.
-
(1990)
Topology Appl.
, vol.37
, pp. 65-73
-
-
Pawlikowski, J.1
-
28
-
-
0040151503
-
Borel sets with small covers
-
Petruska G. Borel sets with small covers. Real Anal. Exchange. 18:1992-1993;330-338.
-
(1992)
Real Anal. Exchange
, vol.18
, pp. 330-338
-
-
Petruska, G.1
-
29
-
-
51249181633
-
Can you take Solovay's inaccessible away?
-
Shelah S. Can you take Solovay's inaccessible away? Israel J. Math. 48:1984;1-47.
-
(1984)
Israel J. Math.
, vol.48
, pp. 1-47
-
-
Shelah, S.1
-
30
-
-
21844508474
-
Covering analytic sets by families of closed sets
-
Solecki S. Covering analytic sets by families of closed sets. J. Symbolic Logic. 59:1994;1022-1031.
-
(1994)
J. Symbolic Logic
, vol.59
, pp. 1022-1031
-
-
Solecki, S.1
-
31
-
-
0002548418
-
A model of set theory in which every set of reals is Lebesgue measurable
-
Solovay R. A model of set theory in which every set of reals is Lebesgue measurable. Ann. of Math. 92:1970;1-56.
-
(1970)
Ann. of Math.
, vol.92
, pp. 1-56
-
-
Solovay, R.1
-
32
-
-
0002117619
-
Compacts de fonctions measurables et filtres nonmeasurables
-
Talagrand M. Compacts de fonctions measurables et filtres nonmeasurables. Studia Math. 67:1980;13-43.
-
(1980)
Studia Math.
, vol.67
, pp. 13-43
-
-
Talagrand, M.1
-
33
-
-
0003355061
-
Partition Problems in Topology
-
Providence: Am. Math. Soc.
-
Todorcevic S. Partition Problems in Topology. Contemp. Math. 84:1989;Am. Math. Soc. Providence.
-
(1989)
Contemp. Math.
, vol.84
-
-
Todorcevic, S.1
-
34
-
-
0002814477
-
Analytic gaps
-
Todorcevic S. Analytic gaps. Fund. Math. 150:1996;55-66.
-
(1996)
Fund. Math.
, vol.150
, pp. 55-66
-
-
Todorcevic, S.1
-
37
-
-
0002132452
-
Definable ideals and gaps in their quotients
-
C.A. Di Prisco, J. Larson, J. Bagaria, & A. Mathias. Dordrecht/Norwell: Kluwer Academic
-
Todorcevic S. Definable ideals and gaps in their quotients. Di Prisco C. A., Larson J., Bagaria J., Mathias A. A Set Theory. Techniques and Applications. 1998;Kluwer Academic, Dordrecht/Norwell.
-
(1998)
A Set Theory. Techniques and Applications
-
-
Todorcevic, S.1
-
40
-
-
0000637460
-
Supercompact cardinals, sets of reals, and weakly homogeneous trees
-
Woodin W. H. Supercompact cardinals, sets of reals, and weakly homogeneous trees. Proc. Nat. Acad. Sci. 1988;6587-6591.
-
(1988)
Proc. Nat. Acad. Sci.
, pp. 6587-6591
-
-
Woodin, W.H.1
|