메뉴 건너뛰기




Volumn 91, Issue 2, 1999, Pages 91-104

A group under MAcountable whose square is countably compact but whose cube is not

Author keywords

Countably compact; MAcountable; Products; Topological group

Indexed keywords


EID: 0005590102     PISSN: 0016660X     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0166-8641(97)00206-x     Document Type: Article
Times cited : (24)

References (19)
  • 1
    • 0001854919 scopus 로고
    • Topological groups
    • K. Kunen and J. Vaughan, eds., North-Holland, Amsterdam
    • W.W. Comfort, Topological groups, in: K. Kunen and J. Vaughan, eds., Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 1143-1263.
    • (1984) Handbook of Set-Theoretic Topology , pp. 1143-1263
    • Comfort, W.W.1
  • 2
    • 0002052467 scopus 로고
    • Problems on topological groups and other homogeneous spaces
    • J. van Mill and G.M. Reed, eds., North-Holland, Amsterdam
    • W.W. Comfort, Problems on topological groups and other homogeneous spaces, in: J. van Mill and G.M. Reed, eds., Open Problems in Topology (North-Holland, Amsterdam, 1990) 311-347.
    • (1990) Open Problems in Topology , pp. 311-347
    • Comfort, W.W.1
  • 3
    • 0001771807 scopus 로고
    • Topological groups and semigroups
    • M. Hušek and J. van Mill, eds., Elsevier, Amsterdam
    • W.W. Comfort, K.H. Hofmann and D. Remus, Topological groups and semigroups, in: M. Hušek and J. van Mill, eds., Recent Progress in General Topology (Elsevier, Amsterdam, 1992) 57-144.
    • (1992) Recent Progress in General Topology , pp. 57-144
    • Comfort, W.W.1    Hofmann, K.H.2    Remus, D.3
  • 4
    • 84972528320 scopus 로고
    • Pseudocompactness and uniform continuity in topological groups
    • W.W. Comfort and K.A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (3) (1966) 483-496.
    • (1966) Pacific J. Math. , vol.16 , Issue.3 , pp. 483-496
    • Comfort, W.W.1    Ross, K.A.2
  • 5
    • 0000908042 scopus 로고
    • The product of two countably compact topological groups
    • E.K. van Douwen, The product of two countably compact topological groups, Trans. Amer. Math. Soc. 262 (1980) 417-427.
    • (1980) Trans. Amer. Math. Soc. , vol.262 , pp. 417-427
    • Van Douwen, E.K.1
  • 7
    • 0027818452 scopus 로고
    • Sequentially compact cancellative topological semigroups: Some progress on the Wallace Problem
    • S. Andima et al., eds., Papers on General Topology and Applications Seventh Summer Conference at the University of Wisconsin
    • D. Grant, Sequentially compact cancellative topological semigroups: some progress on the Wallace Problem, in: S. Andima et al., eds., Papers on General Topology and Applications Seventh Summer Conference at the University of Wisconsin, Ann. New York Acad. Sci. 704 (1993) 150-154.
    • (1993) Ann. New York Acad. Sci. , vol.704 , pp. 150-154
    • Grant, D.1
  • 8
    • 49349132671 scopus 로고
    • A separable normal topological group need not be Lindelöf
    • A. Hajnal and I. Juhász, A separable normal topological group need not be Lindelöf, General Topology Appl. 6 (1976) 199-205.
    • (1976) General Topology Appl. , vol.6 , pp. 199-205
    • Hajnal, A.1    Juhász, I.2
  • 9
    • 84968511046 scopus 로고
    • A countably compact H such that H × H is not countably compact
    • K.P. Hart and J. van Mill, A countably compact H such that H × H is not countably compact, Trans. Amer. Math. Soc. 323 (1991) 811-821.
    • (1991) Trans. Amer. Math. Soc. , vol.323 , pp. 811-821
    • Hart, K.P.1    Van Mill, J.2
  • 10
    • 0004279221 scopus 로고
    • North-Holland, Amsterdam
    • K. Kunen, Set Theory (North-Holland, Amsterdam, 1980).
    • (1980) Set Theory
    • Kunen, K.1
  • 11
    • 0011271130 scopus 로고    scopus 로고
    • An answer to A.D. Wallace's question about countably compact cancellative semigroups
    • D. Robbie and S. Svetlichny, An answer to A.D. Wallace's question about countably compact cancellative semigroups, Proc. Amer. Math. Soc. 124 (1996) 325-330.
    • (1996) Proc. Amer. Math. Soc. , vol.124 , pp. 325-330
    • Robbie, D.1    Svetlichny, S.2
  • 12
    • 0002389148 scopus 로고
    • Countably compact and pseudocompact topologies on free abelian groups
    • M.G. Tkachenko, Countably compact and pseudocompact topologies on free abelian groups, Izvestia Vyssh. Uchebn. Zaved. Mat. 34 (1990) 68-75.
    • (1990) Izvestia Vyssh. Uchebn. Zaved. Mat. , vol.34 , pp. 68-75
    • Tkachenko, M.G.1
  • 13
    • 0030472163 scopus 로고    scopus 로고
    • countable and p-compactness
    • countable and p-compactness, Canad. Math. Bull. 39 (4) (1996) 486-498.
    • (1996) Canad. Math. Bull. , vol.39 , Issue.4 , pp. 486-498
    • Tomita, A.H.1
  • 14
    • 0005580966 scopus 로고    scopus 로고
    • On finite powers of countably compact groups
    • A.H. Tomita, On finite powers of countably compact groups, Comment. Math. Univ. Carolin. 37 (3) (1996) 617-626.
    • (1996) Comment. Math. Univ. Carolin. , vol.37 , Issue.3 , pp. 617-626
    • Tomita, A.H.1
  • 15
    • 85088001367 scopus 로고    scopus 로고
    • 1-compact group topologies on free Abelian groups is independent of ZFC
    • to appear
    • 1-compact group topologies on free Abelian groups is independent of ZFC, Comment. Math. Univ. Carolin., to appear.
    • Comment. Math. Univ. Carolin.
    • Tomita, A.H.1
  • 17
    • 0002380964 scopus 로고
    • Countably compact and sequentially compact spaces
    • K. Kunen and J. Vaughan, eds., North-Holland, Amsterdam
    • J. Vaughan, Countably compact and sequentially compact spaces, in: K. Kunen and J. Vaughan, eds., Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 569-602.
    • (1984) Handbook of Set-Theoretic Topology , pp. 569-602
    • Vaughan, J.1
  • 18
    • 0002937461 scopus 로고
    • The structure of topological semigroups
    • A.D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 61 (1955) 95-112.
    • (1955) Bull. Amer. Math. Soc. , vol.61 , pp. 95-112
    • Wallace, A.D.1
  • 19
    • 0002875217 scopus 로고
    • Versions of Martin's Axiom
    • K. Kunen and J. Vaughan, eds., North-Holland, Amsterdam
    • W. Weiss, Versions of Martin's Axiom, in: K. Kunen and J. Vaughan, eds., Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 827-886.
    • (1984) Handbook of Set-Theoretic Topology , pp. 827-886
    • Weiss, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.