메뉴 건너뛰기




Volumn 35, Issue 20, 1996, Pages 3925-3929

Optical illustration of a varied fractional Fouriertransform order and the Radon–igner display

Author keywords

Fourier optics; Fractional Fourier transforms; Graded index media; Optical information processing; Radon Wigner display; Wigner distribution functions

Indexed keywords


EID: 0005487112     PISSN: 1559128X     EISSN: 21553165     Source Type: Journal    
DOI: 10.1364/AO.35.003925     Document Type: Article
Times cited : (36)

References (12)
  • 1
    • 0027652515 scopus 로고
    • Fractional Fourier transformations and their optical implementation: Part I
    • D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transformations and their optical implementation: Part I,” J. Opt.Soc.Am.A 10, 1875-1881 (1993).
    • (1993) J. Opt.Soc.Am. , vol.10 , pp. 1875-1881
    • Mendlovic, D.1    Ozaktas, H.M.2
  • 2
    • 0027740848 scopus 로고
    • Fractional Fourier transformations and their optical implementation: Part II,’
    • H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transformations and their optical implementation: Part II,” J. Opt. Soc. Am. A10, 2522-2531 (1993).
    • (1993) J. Opt. Soc. Am. , vol.A10 , pp. 2522-2531
    • Ozaktas, H.M.1    Mendlovic, D.2
  • 3
    • 0027682286 scopus 로고
    • Image rotation, Wigner rotation, and the fractional Fourier transform
    • A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181-2186 (1993).
    • (1993) J. Opt. Soc. Am. A , vol.10 , pp. 2181-2186
    • Lohmann, A.W.1
  • 4
    • 0028509784 scopus 로고
    • Graded index fibers, Wigner distribution functions and the fractional Fourier transform
    • D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Graded index fibers, Wigner distribution functions and the fractional Fourier transform,”Appl. Opt. 33, 6188-6193 (1994).
    • (1994) Appl. Opt , vol.33 , pp. 6188-6193
    • Mendlovic, D.1    Ozaktas, H.M.2    Lohmann, A.W.3
  • 6
    • 0028483876 scopus 로고
    • Linear signal synthesis using the Radon-Wigner transform
    • J. C. Wood and D. T. Barry, “Linear signal synthesis using the Radon-Wigner transform,” IEEE Trans. Signal Process. 42, 2105-2111 (1994).
    • (1994) IEEE Trans. Signal Process. , vol.42 , pp. 2105-2111
    • Wood, J.C.1    Barry, D.T.2
  • 7
    • 0028485528 scopus 로고
    • Tomographic time-frequency analysis and its application toward time-varying filtering and adaptive kernel design for multicomponent linear-FM sig-nals
    • J. C. Wood and D. T. Barry, “Tomographic time-frequency analysis and its application toward time-varying filtering and adaptive kernel design for multicomponent linear-FM sig-nals,”IEEE Trans. Signal Process. 42, 2094-2104 (1994).
    • (1994) IEEE Trans. Signal Process , vol.42 , pp. 2094-2104
    • Wood, J.C.1    Barry, D.T.2
  • 8
    • 0028459601 scopus 로고
    • Relationships between the Radon-Wigner and fractional Fourier transforms
    • A. W. Lohmann and B. H. Soffer, “Relationships between the Radon-Wigner and fractional Fourier transforms,” J. Opt. Soc. Am. A11, 1798-1801 (1994).
    • (1994) J. Opt. Soc. Am. , vol.A11 , pp. 1798-1801
    • Lohmann, A.W.1    Soffer, B.H.2
  • 10
    • 85010122939 scopus 로고    scopus 로고
    • A fake zoom lens for fractional Fourier experiments
    • A. W. Lohmann, “A fake zoom lens for fractional Fourier experiments,” Opt. Commun. (to be published).
    • Opt. Commun
    • Lohmann, A.W.1
  • 11
    • 0027550173 scopus 로고
    • Multistage optical implementation architecture with least possible growth of system size
    • H. M. Ozaktas and D. Mendlovic, “Multistage optical implementation architecture with least possible growth of system size,” Opt. Lett. 18, 296-298 (1993).
    • (1993) Opt. Lett. , vol.18 , pp. 296-298
    • Ozaktas, H.M.1    Mendlovic, D.2
  • 12
    • 0016081691 scopus 로고
    • Binary synthetic holograms
    • W. H. Lee, “Binary synthetic holograms,” Appl. Opt. 13, 1677-1682 (1974).
    • (1974) Appl. Opt. , vol.13 , pp. 1677-1682
    • Lee, W.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.