-
1
-
-
0020142292
-
Adaptive methods for periodic initial value problems of second order differential equations
-
ANANTHA KRISHNAIAH, U. 1982 Adaptive methods for periodic initial value problems of second order differential equations. J. Comput. Appl. Math. 8, 101-104.
-
(1982)
J. Comput. Appl. Math.
, vol.8
, pp. 101-104
-
-
Anantha Krishnaiah, U.1
-
3
-
-
0000335011
-
A sixth-order exponentially fitted method for the numerical solution of the radial Schrödinger equation
-
CASH, J. R., RAPTIS, A. D., & SIMOS, T. E. 1990 A sixth-order exponentially fitted method for the numerical solution of the radial Schrödinger equation. J. Comput. Phys. 91, 413-423.
-
(1990)
J. Comput. Phys.
, vol.91
, pp. 413-423
-
-
Cash, J.R.1
Raptis, A.D.2
Simos, T.E.3
-
4
-
-
0039005673
-
A new fourth-order method for y″ = g(x)y + r(x)
-
COLEMAN, J. P. 1980 A new fourth-order method for y″ = g(x)y + r(x). Comput. Phys. Commun. 19, 185-195.
-
(1980)
Comput. Phys. Commun.
, vol.19
, pp. 185-195
-
-
Coleman, J.P.1
-
5
-
-
0001330331
-
Numerical methods for y″ = f(x, y) via rational approximations for the cosine
-
COLEMAN, J. P. 1989 Numerical methods for y″ = f(x, y) via rational approximations for the cosine. IMA J. Numer. Anal. 9, 145-165.
-
(1989)
IMA J. Numer. Anal.
, vol.9
, pp. 145-165
-
-
Coleman, J.P.1
-
6
-
-
0027660690
-
A new numerical method for the integration of highly oscillatory second-order ordinary differential equations
-
DENK, G. 1993 A new numerical method for the integration of highly oscillatory second-order ordinary differential equations. Appl. Numer. Math. 13, 57-67.
-
(1993)
Appl. Numer. Math.
, vol.13
, pp. 57-67
-
-
Denk, G.1
-
7
-
-
0000132696
-
Numerical integration of ordinary differential equations based on trigonometric polynomials
-
GAUTSCHI, W. 1961 Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381-397.
-
(1961)
Numer. Math.
, vol.3
, pp. 381-397
-
-
Gautschi, W.1
-
8
-
-
0040784002
-
Numerical integration of linear sums of exponential functions
-
GREENWOOD, R. E. 1949 Numerical integration of linear sums of exponential functions. Ann. Math. Stat. 20, 608-611.
-
(1949)
Ann. Math. Stat.
, vol.20
, pp. 608-611
-
-
Greenwood, R.E.1
-
10
-
-
0005284782
-
Coleman's method maximally adapted to the Schrödinger equation
-
IXARU, L. G., & BERCEANU, S. 1987 Coleman's method maximally adapted to the Schrödinger equation. Comput. Phys. Commun. 44, 11-20.
-
(1987)
Comput. Phys. Commun.
, vol.44
, pp. 11-20
-
-
Ixaru, L.G.1
Berceanu, S.2
-
11
-
-
0002792006
-
A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies
-
IXARU, L. G., & RIZEA, M. 1980 A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23-27.
-
(1980)
Comput. Phys. Commun.
, vol.19
, pp. 23-27
-
-
Ixaru, L.G.1
Rizea, M.2
-
12
-
-
0005295750
-
Numerov method maximally adapted to the Schrödinger equation
-
IXARU, L. G., & RIZEA, M. 1987 Numerov method maximally adapted to the Schrödinger equation. J. Comput. Phys. 73, 306-324.
-
(1987)
J. Comput. Phys.
, vol.73
, pp. 306-324
-
-
Ixaru, L.G.1
Rizea, M.2
-
13
-
-
0018700101
-
P-stable methods for periodic initial value problems of second order differential equations
-
JAIN, M. K., JAIN, R. K., & ANANTHA KRISHNAIAH, U. 1979a P-stable methods for periodic initial value problems of second order differential equations. BIT 19, 347-355.
-
(1979)
BIT
, vol.19
, pp. 347-355
-
-
Jain, M.K.1
Jain, R.K.2
Anantha Krishnaiah, U.3
-
14
-
-
0018533227
-
P-stable singlestep methods for periodic initial-value problems involving second-order differential equations
-
JAIN, M. K., JAIN, R. K., & ANANTHA KRISHNAIAH, U. 1979b P-stable singlestep methods for periodic initial-value problems involving second-order differential equations. J. Eng. Math. 13, 317-326.
-
(1979)
J. Eng. Math.
, vol.13
, pp. 317-326
-
-
Jain, M.K.1
Jain, R.K.2
Anantha Krishnaiah, U.3
-
15
-
-
0000657979
-
Stability of collocation methods for the numerical solution of y″ = f(t, y)
-
KRAMARZ, L. 1980 Stability of collocation methods for the numerical solution of y″ = f(t, y). BIT 20, 215-222.
-
(1980)
BIT
, vol.20
, pp. 215-222
-
-
Kramarz, L.1
-
16
-
-
77958409581
-
Symmetric multistep methods for periodic initial-value problems
-
LAMBERT, J. D., & WATSON, I. A. 1976 Symmetric multistep methods for periodic initial-value problems. J. Inst. Math. Applic. 18, 189-202.
-
(1976)
J. Inst. Math. Applic.
, vol.18
, pp. 189-202
-
-
Lambert, J.D.1
Watson, I.A.2
-
17
-
-
34250466523
-
Chebyshevian multistep methods for ordinary differential equations
-
LYCHE, T. 1972 Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65-75.
-
(1972)
Numer. Math.
, vol.19
, pp. 65-75
-
-
Lyche, T.1
-
18
-
-
0002481899
-
On the numerical solution of the Schrödinger equation
-
RAPTIS, A. D. 1981 On the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 24, 1-4.
-
(1981)
Comput. Phys. Commun.
, vol.24
, pp. 1-4
-
-
Raptis, A.D.1
-
19
-
-
0000172670
-
Exponentially-fitted solutions of the eigenvalue Schrödinger equation with automatic error control
-
RAPTIS, A. D. 1983 Exponentially-fitted solutions of the eigenvalue Schrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427-431.
-
(1983)
Comput. Phys. Commun.
, vol.28
, pp. 427-431
-
-
Raptis, A.D.1
-
20
-
-
0002779398
-
Exponential-fitting methods for the numerical solution of the Schrödinger equation
-
RAPTIS, A. D., & ALLISON, A. C. 1978 Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 44, 95-103.
-
(1978)
Comput. Phys. Commun.
, vol.44
, pp. 95-103
-
-
Raptis, A.D.1
Allison, A.C.2
-
21
-
-
0000926830
-
A four-step phase-fitted method for the numerical integration of second order initial-value problems
-
RAPTIS, A. D., & SIMOS, T. E. 1991 A four-step phase-fitted method for the numerical integration of second order initial-value problems. BIT 31, 160-168.
-
(1991)
BIT
, vol.31
, pp. 160-168
-
-
Raptis, A.D.1
Simos, T.E.2
-
22
-
-
0040784005
-
Generalized multi-step methods with an application to orbit computation
-
SHEFFIELD, C. 1969 Generalized multi-step methods with an application to orbit computation. Celestial Mech. 1, 46-58.
-
(1969)
Celestial Mech.
, vol.1
, pp. 46-58
-
-
Sheffield, C.1
-
23
-
-
0000168727
-
A four-step method for the numerical solution of the Schrödinger equation
-
SIMOS, T. E. 1990 A four-step method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 30, 251-255.
-
(1990)
J. Comput. Appl. Math.
, vol.30
, pp. 251-255
-
-
Simos, T.E.1
-
24
-
-
30244570721
-
Some new four-step exponential-fitting methods for the numerical solution of the radial Schrödinger equation
-
SIMOS, T. E. 1991a Some new four-step exponential-fitting methods for the numerical solution of the radial Schrödinger equation. IMA J. Numer. Anal. 11, 347-356.
-
(1991)
IMA J. Numer. Anal.
, vol.11
, pp. 347-356
-
-
Simos, T.E.1
-
25
-
-
30244538518
-
A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems
-
SIMOS, T. E. 1991b A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problems. Int. J. Comput. Math. 39, 135-140.
-
(1991)
Int. J. Comput. Math.
, vol.39
, pp. 135-140
-
-
Simos, T.E.1
-
26
-
-
0001818026
-
Symmetric linear multistep methods for second order differential equations with periodic solutions
-
SOMMEIJER, B. P., VAN DER HOUWEN, P. J., & NETA, B. 1986 Symmetric linear multistep methods for second order differential equations with periodic solutions. Appl. Numer. Math. 2, 69-77.
-
(1986)
Appl. Numer. Math.
, vol.2
, pp. 69-77
-
-
Sommeijer, B.P.1
Van Der Houwen, P.J.2
Neta, B.3
-
27
-
-
33645269140
-
Stabilization of Cowell's method
-
STIEFEL, E., & BETTIS, D. G. 1969 Stabilization of Cowell's method. Numer. Math. 13, 154-175.
-
(1969)
Numer. Math.
, vol.13
, pp. 154-175
-
-
Stiefel, E.1
Bettis, D.G.2
-
29
-
-
0005239563
-
A modified numerov integration method for second order periodic initial-value problems
-
VANDEN BERGHE, G., DE MEYER, H., & VANTHOURNOUT, J. 1990 A modified Numerov integration method for second order periodic initial-value problems. Int. J. Comput. Math. 32, 233-242.
-
(1990)
Int. J. Comput. Math.
, vol.32
, pp. 233-242
-
-
Vanden Berghe, G.1
De Meyer, H.2
Vanthournout, J.3
|