메뉴 건너뛰기




Volumn 50, Issue 6, 1994, Pages 4327-4345

Dendrites and fronts in a model of dynamical rupture with damage

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0004723226     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.50.4327     Document Type: Article
Times cited : (9)

References (25)
  • 5
    • 84927493605 scopus 로고    scopus 로고
    • Disorder and Fracture, Vol. 235 of NATO Advanced Study Institute, Series B: Physics, edited by J. C. Charmet, S. Roux, and E. Guyon (Plenum, New York, 1990).
  • 6
  • 15
    • 84927466367 scopus 로고    scopus 로고
    • K. Aki and O. G. Richards, Quantitative Seismology, Theory, and Methods (Freeman, San Francisco, 1980), Vol. II, p. 833.
  • 17
    • 84927502866 scopus 로고    scopus 로고
    • See, for instance D. Krajcinovic and J. Lemaitre, Continuum Damage Mechanics: Theory and Applications, CISM Course (Springer-Verlag, Berlin, 1987); L. M. Kachanov, Introduction to Continuum Damage Mechanics (Nijhoff, Amsterdam, 1986).
  • 24
    • 84927478688 scopus 로고    scopus 로고
    • Note that a simple analytical solution of this problem has been possible due to the small width of the strip equal to three lattice meshes. This finite size changes the long-range r-1 electric current Green function into a short-range exponentially decaying Green function, with a characteristic decay length equal to [ ln (s5- 1)]-1approx 0.64 lattice mesh. In strips of increasing width L, the decay length of the Green function increases linearly with L: this constitutes a simple example of finite size scaling [see, for instance, J. L. Cardy, Finite Size Scaling, Current Physics, Sources, and Comments (North-Holland, Amsterdam, 1988)].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.