메뉴 건너뛰기




Volumn 80, Issue 3, 1998, Pages 265-281

(0, ±1) ideal matrices

Author keywords

(0, 1) matrices; Generalized set covering problem; Lehman's theorem; Perfect and ideal matrices

Indexed keywords


EID: 0004656160     PISSN: 00255610     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF01581169     Document Type: Article
Times cited : (9)

References (8)
  • 1
    • 0004683064 scopus 로고
    • Balanced 0, ±1 matrices, bicoloring and total dual integrality
    • M. Conforti and G. Cornuéjols, Balanced 0, ±1 matrices, bicoloring and total dual integrality, Mathematical Programming 71 (1995) 249-258.
    • (1995) Mathematical Programming , vol.71 , pp. 249-258
    • Conforti, M.1    Cornuéjols, G.2
  • 3
    • 0042641640 scopus 로고
    • Perfect and ideal (0, ±1) matrices
    • GSIA, Carnegie Mellon University
    • B. Guenin, Perfect and ideal (0, ±1) matrices, Technical Report, GSIA, Carnegie Mellon University, 1994.
    • (1994) Technical Report
    • Guenin, B.1
  • 4
    • 0347280481 scopus 로고
    • Resolution and integrality of satisfiability problems
    • GSIA, Carnegie Mellon University
    • J. Hooker, Resolution and integrality of satisfiability problems, Technical Report, GSIA, Carnegie Mellon University, 1994.
    • (1994) Technical Report
    • Hooker, J.1
  • 5
    • 0001444889 scopus 로고
    • On the width-length inequality
    • A. Lehman, On the width-length inequality, Mathematical Programming 17 (1979) 403-413.
    • (1979) Mathematical Programming , vol.17 , pp. 403-413
    • Lehman, A.1
  • 7
    • 0001341423 scopus 로고
    • On Lehman's width-length characterization
    • W. Cook and P.D. Seymour (eds.), Polyhedral Combinatorics
    • P.D. Seymour, On Lehman's width-length characterization, in: W. Cook and P.D. Seymour (eds.), Polyhedral Combinatorics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 1 (1990) 107-117.
    • (1990) DIMACS Series in Discrete Mathematics and Theoretical Computer Science , vol.1 , pp. 107-117
    • Seymour, P.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.