메뉴 건너뛰기




Volumn 54, Issue 3, 1998, Pages 275-288

Local Solutions to the Navier-Stokes Equations with Mixed Boundary Conditions

Author keywords

Fixed point theorem; Mixed boundary conditions; Navier Stokes equations; Sobolev space with non integer derivatives; Weak solution

Indexed keywords


EID: 0004442781     PISSN: 01678019     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1006185601807     Document Type: Article
Times cited : (47)

References (9)
  • 3
    • 0029777695 scopus 로고    scopus 로고
    • Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations
    • Heywood, J. G., Rannacher, R. and Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids 22 (1996), 325-352.
    • (1996) Internat. J. Numer. Methods Fluids , vol.22 , pp. 325-352
    • Heywood, J.G.1    Rannacher, R.2    Turek, S.3
  • 4
    • 24844473709 scopus 로고
    • Global existence of weak solutions of a nonsteady variational inequality of the Navier-Stokes type with mixed boundary conditions
    • Kračmar, S. and Neustupa, J.: Global existence of weak solutions of a nonsteady variational inequality of the Navier-Stokes type with mixed boundary conditions, in: Proc. Internat. Symp. on Num. Math. ISNA'92, Part 3, 1992, pp. 489-522.
    • (1992) Proc. Internat. Symp. on Num. Math. ISNA'92 , Issue.3 PART , pp. 489-522
    • Kračmar, S.1    Neustupa, J.2
  • 5
    • 21344487043 scopus 로고
    • Modelling of flows of a viscous incompressible fluid through a channel by means of variational inequalities
    • Kračmar, S. and Neustupa, J.: Modelling of flows of a viscous incompressible fluid through a channel by means of variational inequalities, Z. angew. math. Mech. 74 (1994), T637-T639.
    • (1994) Z. Angew. Math. Mech. , vol.74
    • Kračmar, S.1    Neustupa, J.2
  • 6
    • 0004381568 scopus 로고    scopus 로고
    • Some properties of solutions to the nonsteady Navier-Stokes equations with mixed boundary conditions on the infinite time interval
    • M. Feistauer, R. Rannacher and K. Kozel (eds), Matfyzpress, Faculty of Mathematics and Physics, Charles University, Prague
    • Kučera, P.: Some properties of solutions to the nonsteady Navier-Stokes equations with mixed boundary conditions on the infinite time interval, in: M. Feistauer, R. Rannacher and K. Kozel (eds), Proc. 3rd Summer Conference 'Numerical Modelling in Continuum Mechanics', Part 2, Matfyzpress, Faculty of Mathematics and Physics, Charles University, Prague, 1997, pp. 375-383.
    • (1997) Proc. 3rd Summer Conference 'Numerical Modelling in Continuum Mechanics' , Issue.2 PART , pp. 375-383
    • Kučera, P.1
  • 7
    • 0004004657 scopus 로고
    • Academia, Czechoslovak Academy of Sciences, Prague
    • Kufner, A., John, O. and Fučík, S.: Function Spaces, Academia, Czechoslovak Academy of Sciences, Prague, 1977.
    • (1977) Function Spaces
    • Kufner, A.1    John, O.2    Fučík, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.