메뉴 건너뛰기




Volumn 3390, Issue , 1998, Pages 12-23

Classification and pose estimation of objects using nonlinear features

Author keywords

Active vision; Classification; Discrimination (nonlinear); Feature extraction; Neural networks; Pose estimation; Principal component analysis; Representation

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DESIGN; EXTRACTION; FEATURE EXTRACTION; NEURAL NETWORKS; NONLINEAR ANALYSIS; SPACE FLIGHT;

EID: 0003966348     PISSN: 0277786X     EISSN: 1996756X     Source Type: Conference Proceeding    
DOI: 10.1117/12.304801     Document Type: Conference Paper
Times cited : (8)

References (27)
  • 1
    • 0024056554 scopus 로고
    • Active perception
    • R. Bajcsy. Active perception. IEEE Proceedings, 76(8):996-1006, 1988.
    • (1988) IEEE Proceedings , vol.76 , Issue.8 , pp. 996-1006
    • Bajcsy, R.1
  • 5
    • 0029345304 scopus 로고
    • Pose estimation of three-dimensional objects from single camera images
    • P. Wlczek, A. Maccato, and R. J. P De Figueiredo. Pose estimation of three-dimensional objects from single camera images. Digital Signal Processing. 5(3):176-183, 1995.
    • (1995) Digital Signal Processing. , vol.5 , Issue.3 , pp. 176-183
    • Wlczek, P.1    Maccato, A.2    De Figueiredo, R.J.P.3
  • 7
    • 1542778979 scopus 로고    scopus 로고
    • Single view recognition and pose estimation of 3d objects using sets of prototypical views and spatially tolerant contour representations
    • Aug.
    • J. Dunker, G. Hartmann, and M. Stohr. Single view recognition and pose estimation of 3d objects using sets of prototypical views and spatially tolerant contour representations. In Proc. 13'th Int. Conf. Pattern Recognition, volume 4, pages 25-29, Aug. 1996.
    • (1996) Proc. 13'th Int. Conf. Pattern Recognition , vol.4 , pp. 25-29
    • Dunker, J.1    Hartmann, G.2    Stohr, M.3
  • 8
    • 0030191206 scopus 로고    scopus 로고
    • Recognition and pose estimation of unoccluded three-dimensional objects from a twodimensional perspective view by banks of neural networks
    • A. Khotanzad and J. J. Liou. Recognition and pose estimation of unoccluded three-dimensional objects from a twodimensional perspective view by banks of neural networks. IEEE Trans. Neural Networks, 7(4):291-303, 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.4 , pp. 291-303
    • Khotanzad, A.1    Liou, J.J.2
  • 9
    • 0030644243 scopus 로고    scopus 로고
    • A comparative study of the robustness of two pose estimation techniques
    • C. B. Madsen. A comparative study of the robustness of two pose estimation techniques. Machine Vision and Applications, 9 (5-6):291-303, 1997.
    • (1997) Machine Vision and Applications , vol.9 , Issue.5-6 , pp. 291-303
    • Madsen, C.B.1
  • 11
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • 498-520
    • H. Hotelling. Analysis of a complex of statistical variables into principal components. J. Educ. Psychology, 24:417-441 and 498-520, 1933.
    • (1933) J. Educ. Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 12
    • 0030214923 scopus 로고    scopus 로고
    • Using discriminant eigenfeatures for image retrieval
    • Aug.
    • D. L. Swets and J. J. Weng. Using discriminant eigenfeatures for image retrieval. IEEE Trans. PAMI, 18(8):831-836, Aug. 1996.
    • (1996) IEEE Trans. PAMI , vol.18 , Issue.8 , pp. 831-836
    • Swets, D.L.1    Weng, J.J.2
  • 13
    • 84910828260 scopus 로고
    • Applications of the karhunen-loeve expansion to feature selection and ordering
    • K. Fukunaga and W. L. G. Koontz. Applications of the Karhunen-Loeve expansion to feature selection and ordering. IEEE Trans. Comp., C-19:917-923, 1970.
    • (1970) IEEE Trans. Comp. , vol.C-19 , pp. 917-923
    • Fukunaga, K.1    Koontz, W.L.G.2
  • 15
    • 0027245247 scopus 로고
    • Learning higher order correlations
    • G. Taylor and S. Coombes. Learning higher order correlations. Neural Networks, 6:423-427, 1993.
    • (1993) Neural Networks , vol.6 , pp. 423-427
    • Taylor, G.1    Coombes, S.2
  • 16
    • 0028272776 scopus 로고
    • Representation and separation of signals using nonlinear PCA type learning
    • J. Karhunen and J. Joutsensalo. Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 7(1):113-127, 1994.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 17
    • 0026954957 scopus 로고
    • Blind separation of sources: A nonlinear neural algorithm
    • G. Burel. Blind separation of sources: A nonlinear neural algorithm. Neural Networks, 5:937-947, 1992.
    • (1992) Neural Networks , vol.5 , pp. 937-947
    • Burel, G.1
  • 18
    • 0024072967 scopus 로고
    • A computational method for design of 2-D nonlinear volterra filters
    • Sept.
    • G. F. Ramponi, G. L. Sicuranza, and W. Ukovich. A computational method for design of 2-D nonlinear Volterra filters. IEEE Trans. on Circuits and Systems, 35(9):1095-1102, Sept. 1988.
    • (1988) IEEE Trans. On Circuits and Systems , vol.35 , Issue.9 , pp. 1095-1102
    • Ramponi, G.F.1    Sicuranza, G.L.2    Ukovich, W.3
  • 19
    • 0029061996 scopus 로고
    • Generalizations of principal component analysis, optimization problems, and neural networks
    • J. Karhunen and J. Joutsensalo. Generalizations of principal component analysis, optimization problems, and neural networks. Neural Networks, 8(4):549-562, 1995.
    • (1995) Neural Networks , vol.8 , Issue.4 , pp. 549-562
    • Karhunen, J.1    Joutsensalo, J.2
  • 20
    • 0025795079 scopus 로고
    • Correlations in high dimensional or asymmetric data sets: Hebbian neuronal processing
    • Nov.
    • W. S. Softky and D. M. Kammen. Correlations in high dimensional or asymmetric data sets: Hebbian neuronal processing. Neural Networks, 4(3):337-348, Nov. 1991.
    • (1991) Neural Networks , vol.4 , Issue.3 , pp. 337-348
    • Softky, W.S.1    Kammen, D.M.2
  • 21
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja. A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15:267-273, 1982.
    • (1982) Journal of Mathematical Biology , vol.15 , pp. 267-273
    • Oja, E.1
  • 24
    • 0029343601 scopus 로고
    • A framework for improved training of sigma-pi networks
    • July
    • Malcolm Heywood and Peter Noakes. A framework for improved training of Sigma-Pi networks. IEEE Transactions on Neural Networks, 6(4):893-903, July 1995.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.4 , pp. 893-903
    • Heywood, M.1    Noakes, P.2
  • 25
    • 0029568042 scopus 로고
    • Classifier and shift-invariant ATR neural networks
    • D. Casasent and L. Neiberg. Classifier and shift-invariant ATR neural networks. Neural Networks, 8 (7/8):1117-1129, 1995.
    • (1995) Neural Networks , vol.8 , Issue.7-8 , pp. 1117-1129
    • Casasent, D.1    Neiberg, L.2
  • 27
    • 2342489089 scopus 로고
    • Recognition of volumetric features from CAD models: Problem formalization and algorithms
    • W. C. Regli and D. S. Nau. Recognition of volumetric features from CAD models: Problem formalization and algorithms. In Technical Report: University of Maryland, number 93-41, 1993.
    • (1993) Technical Report: University of Maryland , Issue.93-141
    • Regli, W.C.1    Nau, D.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.