메뉴 건너뛰기




Volumn 58, Issue 2, 1998, Pages 1843-1850

Discretized integral hydrodynamics

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0003540603     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.58.1843     Document Type: Article
Times cited : (6)

References (31)
  • 4
    • 11744261141 scopus 로고    scopus 로고
    • B. Alder, Physica A 240, 1 (1997).PHYADX
    • (1997) Physica A , vol.240 , pp. 1
    • Alder, B.1
  • 10
  • 27
    • 0000066641 scopus 로고
    • For extensions to nonlinear fluctuations and to the formulation of the corresponding Fokker-Planck equations, see W. van Saarloos, D. Bedeaux, and P. Mazur, Physica A 110, 147 (1982).PHYADX
    • (1982) Physica A , vol.110 , pp. 147
    • van Saarloos, W.1    Bedeaux, D.2    Mazur, P.3
  • 28
    • 85036132592 scopus 로고    scopus 로고
    • For an improvement of the numerical method of DPD, see I. Pagonabarraga, M. H. J. Hagen, and D. Frenkel, Europhys. Lett. (to be published)
    • For an improvement of the numerical method of DPD, see I. Pagonabarraga, M. H. J. Hagen, and D. Frenkel, Europhys. Lett. (to be published).
  • 30
    • 85036418143 scopus 로고    scopus 로고
    • SPH formulations (Refs. c4 c5 c8) the masses of the particles are given constants, and the variable that obeys the continuity equation is the mass density. Here the mass [Formula Presented] is already the discretized mass density; see Eq. (34)
    • In SPH formulations (Refs. 458) the masses of the particles are given constants, and the variable that obeys the continuity equation is the mass density. Here the mass mi is already the discretized mass density; see Eq. (34).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.