-
1
-
-
77958407025
-
The fractional Fourier transform and its application in quantum mechanics
-
V. Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980).
-
(1980)
J. Inst. Math. Appl.
, vol.25
, pp. 241-265
-
-
Namias, V.1
-
2
-
-
0027641018
-
Fourier transform of fractional orders and their optical interpretation
-
H. M. Ozaktas and D. Mendlovic, “Fourier transform of fractional orders and their optical interpretation,” Opt. Commun. 101,163-169 (1993).
-
(1993)
Opt. Commun.
, vol.101
, pp. 163-169
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
3
-
-
0027652515
-
Fractional Fourier transformations and their optical implementation: I
-
D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transformations and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).
-
(1993)
J. Opt. Soc. Am.
, vol.A10
, pp. 1875-1881
-
-
Mendlovic, D.1
Ozaktas, H.M.2
-
4
-
-
0027740848
-
Fractional Fourier transformations and their optical implementation: II
-
H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transformations and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).
-
(1993)
J. Opt. Soc. Am.
, vol.A10
, pp. 2522-2531
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
5
-
-
3643065515
-
An introduction to the angular Fourier transform
-
L. B. Almeida, “An introduction to the angular Fourier transform,” IEEE Trans. Signal Process. 33, 6182–6190 (1994).
-
(1994)
IEEE Trans. Signal Process.
, vol.33
, pp. 6182-6190
-
-
Almeida, L.B.1
-
6
-
-
12044254133
-
Complex wave-field reconstruction using phase-space tomography
-
M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 1137-1140
-
-
Raymer, M.G.1
Beck, M.2
McAlister, D.F.3
-
7
-
-
84946282862
-
The fractional Fourier transform in optical propagation problems
-
T. Alieva, Vicente Lopez, F. Agullo-Lopez, and L. B. Almeida, “The fractional Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994).
-
(1994)
J. Mod. Opt.
, vol.41
, pp. 1037-1044
-
-
Alieva, T.1
Lopez, V.2
Agullo-Lopez, F.3
Almeida, L.B.4
-
8
-
-
0028494881
-
Fractional Fourier transform and Fourier optics
-
P. Pellat-Finet and G. Bonnet, “Fractional Fourier transform and Fourier optics,” Opt. Commun. 111,141-154 (1994).
-
(1994)
Opt. Commun.
, vol.111
, pp. 141-154
-
-
Pellat-Finet, P.1
Bonnet, G.2
-
9
-
-
0028509784
-
Gradedindex media, Wigner distribution functions, and the fractional Fourier transform
-
D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Gradedindex media, Wigner distribution functions, and the fractional Fourier transform,” Appl. Opt. 33, 6182–6187 (1994).
-
(1994)
Appl. Opt.
, vol.33
, pp. 6182-6187
-
-
Mendlovic, D.1
Ozaktas, H.M.2
Lohmann, A.W.3
-
10
-
-
0028546549
-
Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators
-
H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators,” Opt. Lett. 19, 1678–1680 (1994).
-
(1994)
Opt. Lett.
, vol.19
, pp. 1678-1680
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
11
-
-
0028459614
-
Expression of the kernel of a fractional Fourier transform in elementary functions
-
Y. B. Karasik, “Expression of the kernel of a fractional Fourier transform in elementary functions,” Opt. Lett. 19, 769–770 (1994).
-
(1994)
Opt. Lett.
, vol.19
, pp. 769-770
-
-
Karasik, Y.B.1
-
12
-
-
0029229719
-
Reconstruction of the optical correlation function in a quadratic refractive index medium
-
T. Alieva and F. Agullo-Lopez, “Reconstruction of the optical correlation function in a quadratic refractive index medium,” Opt. Commun. 114,161-169 (1995).
-
(1995)
Opt. Commun.
, vol.114
, pp. 161-169
-
-
Alieva, T.1
Agullo-Lopez, F.2
-
13
-
-
85010096405
-
-
2nd ed. Freeman, New York, Chap. 1
-
B. B. Mandelbrot, The Fractal Geometry of Nature, 2nd ed. (Freeman, New York, 1982), Chap. 1, pp. 1–5.
-
(1982)
The Fractal Geometry of Nature
, pp. 1-5
-
-
Mandelbrot, B.B.1
-
14
-
-
5244306537
-
-
Plenum, New York, Chap. 2
-
J. Feder, Fractals (Plenum, New York, 1988), Chap. 2, pp. 26–27.
-
(1988)
Fractals
, pp. 26-27
-
-
Feder, J.1
-
15
-
-
85027180665
-
Self-affine fractal geometry
-
F. Family and T. Vicsek, eds. World Scientific, Singapore, Chap. 2
-
B. B. Mandelbrot, “Self-affine fractal geometry,” in Dynamics of Fractal Surfaces, F. Family and T. Vicsek, eds. (World Scientific, Singapore, 1991), Chap. 2, pp. 5–51.
-
(1991)
Dynamics of Fractal Surfaces
, pp. 5-51
-
-
Mandelbrot, B.B.1
-
16
-
-
0000732455
-
Wavelet transform of multifractals
-
A. Arneodo, G. Grasseau, and M. Holschneider, “Wavelet transform of multifractals,” Phys. Rev. Lett. 61, 2281–2284 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 2281-2284
-
-
Arneodo, A.1
Grasseau, G.2
Holschneider, M.3
-
17
-
-
0000625076
-
Optical diffraction on fractals
-
C. Allain and M. Cloitre, “Optical diffraction on fractals,” Phys. Rev. B 33, 3566–3569 (1986).
-
(1986)
Phys. Rev.
, vol.B33
, pp. 3566-3569
-
-
Allain, C.1
Cloitre, M.2
-
18
-
-
0026732526
-
Fresnel diffraction by one-dimensional regular fractals
-
Y. Sakurada, J. Uozumi, and T. Asakura, “Fresnel diffraction by one-dimensional regular fractals,” Pure Appl. Opt. 1, 29–40 (1992).
-
(1992)
Pure Appl. Opt.
, vol.1
, pp. 29-40
-
-
Sakurada, Y.1
Uozumi, J.2
Asakura, T.3
|