메뉴 건너뛰기




Volumn 13, Issue 6, 1996, Pages 1189-1192

Fractional Fourier transform as a tool for investigation of fractal objects

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0003422788     PISSN: 10847529     EISSN: 15208532     Source Type: Journal    
DOI: 10.1364/JOSAA.13.001189     Document Type: Article
Times cited : (22)

References (18)
  • 1
    • 77958407025 scopus 로고
    • The fractional Fourier transform and its application in quantum mechanics
    • V. Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980).
    • (1980) J. Inst. Math. Appl. , vol.25 , pp. 241-265
    • Namias, V.1
  • 2
    • 0027641018 scopus 로고
    • Fourier transform of fractional orders and their optical interpretation
    • H. M. Ozaktas and D. Mendlovic, “Fourier transform of fractional orders and their optical interpretation,” Opt. Commun. 101,163-169 (1993).
    • (1993) Opt. Commun. , vol.101 , pp. 163-169
    • Ozaktas, H.M.1    Mendlovic, D.2
  • 3
    • 0027652515 scopus 로고
    • Fractional Fourier transformations and their optical implementation: I
    • D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transformations and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).
    • (1993) J. Opt. Soc. Am. , vol.A10 , pp. 1875-1881
    • Mendlovic, D.1    Ozaktas, H.M.2
  • 4
    • 0027740848 scopus 로고
    • Fractional Fourier transformations and their optical implementation: II
    • H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transformations and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).
    • (1993) J. Opt. Soc. Am. , vol.A10 , pp. 2522-2531
    • Ozaktas, H.M.1    Mendlovic, D.2
  • 5
    • 3643065515 scopus 로고
    • An introduction to the angular Fourier transform
    • L. B. Almeida, “An introduction to the angular Fourier transform,” IEEE Trans. Signal Process. 33, 6182–6190 (1994).
    • (1994) IEEE Trans. Signal Process. , vol.33 , pp. 6182-6190
    • Almeida, L.B.1
  • 6
    • 12044254133 scopus 로고
    • Complex wave-field reconstruction using phase-space tomography
    • M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).
    • (1994) Phys. Rev. Lett. , vol.72 , pp. 1137-1140
    • Raymer, M.G.1    Beck, M.2    McAlister, D.F.3
  • 7
    • 84946282862 scopus 로고
    • The fractional Fourier transform in optical propagation problems
    • T. Alieva, Vicente Lopez, F. Agullo-Lopez, and L. B. Almeida, “The fractional Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994).
    • (1994) J. Mod. Opt. , vol.41 , pp. 1037-1044
    • Alieva, T.1    Lopez, V.2    Agullo-Lopez, F.3    Almeida, L.B.4
  • 8
    • 0028494881 scopus 로고
    • Fractional Fourier transform and Fourier optics
    • P. Pellat-Finet and G. Bonnet, “Fractional Fourier transform and Fourier optics,” Opt. Commun. 111,141-154 (1994).
    • (1994) Opt. Commun. , vol.111 , pp. 141-154
    • Pellat-Finet, P.1    Bonnet, G.2
  • 9
    • 0028509784 scopus 로고
    • Gradedindex media, Wigner distribution functions, and the fractional Fourier transform
    • D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Gradedindex media, Wigner distribution functions, and the fractional Fourier transform,” Appl. Opt. 33, 6182–6187 (1994).
    • (1994) Appl. Opt. , vol.33 , pp. 6182-6187
    • Mendlovic, D.1    Ozaktas, H.M.2    Lohmann, A.W.3
  • 10
    • 0028546549 scopus 로고
    • Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators
    • H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators,” Opt. Lett. 19, 1678–1680 (1994).
    • (1994) Opt. Lett. , vol.19 , pp. 1678-1680
    • Ozaktas, H.M.1    Mendlovic, D.2
  • 11
    • 0028459614 scopus 로고
    • Expression of the kernel of a fractional Fourier transform in elementary functions
    • Y. B. Karasik, “Expression of the kernel of a fractional Fourier transform in elementary functions,” Opt. Lett. 19, 769–770 (1994).
    • (1994) Opt. Lett. , vol.19 , pp. 769-770
    • Karasik, Y.B.1
  • 12
    • 0029229719 scopus 로고
    • Reconstruction of the optical correlation function in a quadratic refractive index medium
    • T. Alieva and F. Agullo-Lopez, “Reconstruction of the optical correlation function in a quadratic refractive index medium,” Opt. Commun. 114,161-169 (1995).
    • (1995) Opt. Commun. , vol.114 , pp. 161-169
    • Alieva, T.1    Agullo-Lopez, F.2
  • 14
    • 5244306537 scopus 로고
    • Plenum, New York, Chap. 2
    • J. Feder, Fractals (Plenum, New York, 1988), Chap. 2, pp. 26–27.
    • (1988) Fractals , pp. 26-27
    • Feder, J.1
  • 15
    • 85027180665 scopus 로고
    • Self-affine fractal geometry
    • F. Family and T. Vicsek, eds. World Scientific, Singapore, Chap. 2
    • B. B. Mandelbrot, “Self-affine fractal geometry,” in Dynamics of Fractal Surfaces, F. Family and T. Vicsek, eds. (World Scientific, Singapore, 1991), Chap. 2, pp. 5–51.
    • (1991) Dynamics of Fractal Surfaces , pp. 5-51
    • Mandelbrot, B.B.1
  • 17
    • 0000625076 scopus 로고
    • Optical diffraction on fractals
    • C. Allain and M. Cloitre, “Optical diffraction on fractals,” Phys. Rev. B 33, 3566–3569 (1986).
    • (1986) Phys. Rev. , vol.B33 , pp. 3566-3569
    • Allain, C.1    Cloitre, M.2
  • 18
    • 0026732526 scopus 로고
    • Fresnel diffraction by one-dimensional regular fractals
    • Y. Sakurada, J. Uozumi, and T. Asakura, “Fresnel diffraction by one-dimensional regular fractals,” Pure Appl. Opt. 1, 29–40 (1992).
    • (1992) Pure Appl. Opt. , vol.1 , pp. 29-40
    • Sakurada, Y.1    Uozumi, J.2    Asakura, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.