-
3
-
-
0002296067
-
Set functions and applications
-
[AK80] Karl L. E. Nickel, editor, Academic Press
-
[AK80] N. Apostolatos and G. Karabatzos. Set functions and applications. In Karl L. E. Nickel, editor, Interval Mathematics, pages 1-24. Academic Press, 1980.
-
(1980)
Interval Mathematics
, pp. 1-24
-
-
Apostolatos, N.1
Karabatzos, G.2
-
4
-
-
33947281879
-
Roundings and approximations in ordered sets
-
[Alb80] G. Alefeld and R.D. Grigorieff, editors, Springer
-
[Alb80] R. Albrecht. Roundings and approximations in ordered sets. In G. Alefeld and R.D. Grigorieff, editors, Fundamentals of Numberical Computation (Computer-Oriented Numerical Analysis), volume 2 of Computing Supple-mentum, pages 17-31. Springer, 1980.
-
(1980)
Fundamentals of Numberical Computation (Computer-Oriented Numerical Analysis), Volume 2 of Computing Supple-mentum
, vol.2
, pp. 17-31
-
-
Albrecht, R.1
-
6
-
-
0006477145
-
Algorithms that still produce a solution (maybe not optimal) even when interrupted: Shary's idea justified
-
[BCK97]
-
[BCK97] Maria Beltran, Gilbert Castillo, and Vladik Kreinovich. Algorithms that still produce a solution (maybe not optimal) even when interrupted: Shary's idea justified. Reliable Computing, 3(3):39-53, 1997.
-
(1997)
Reliable Computing
, vol.3
, Issue.3
, pp. 39-53
-
-
Beltran, M.1
Castillo, G.2
Kreinovich, V.3
-
7
-
-
0001842932
-
A useful four-valued logic
-
[Bel77] J. Michael Dunn and G. Epstein, editors, Reidel
-
[Bel77] N.B. Belnap, Jr. A useful four-valued logic. In J. Michael Dunn and G. Epstein, editors, Modern Uses of Multiple- Valued Logic, pages 8-37. Reidel, 1977.
-
(1977)
Modern Uses of Multiple- Valued Logic
, pp. 8-37
-
-
Belnap Jr., N.B.1
-
8
-
-
0013449534
-
Automatically verified arithmetic on probability distributions and intervals
-
[Ber96] R. Baker Kearfott and Vladik Kreinovich, editors, Kluwer
-
[Ber96] D. Berleant. Automatically verified arithmetic on probability distributions and intervals. In R. Baker Kearfott and Vladik Kreinovich, editors, Applications of Interval Computations. Kluwer, 1996.
-
(1996)
Applications of Interval Computations
-
-
Berleant, D.1
-
9
-
-
0003088011
-
Computation and application of taylor polynomials with interval remainder bounds
-
[BH98]
-
[BH98] Martin Berz and Georg Hoffstätter. Computation and application of taylor polynomials with interval remainder bounds. Reliable Computing, 4:83-97, 1998.
-
(1998)
Reliable Computing
, vol.4
, pp. 83-97
-
-
Berz, M.1
Hoffstätter, G.2
-
10
-
-
33947204765
-
Über einen die geometrischen Reihen betreffenden Lehrsatz
-
[Can70]
-
[Can70] Georg Cantor. Über einen die geometrischen Reihen betreffenden Lehrsatz. Grelles Journal f. Mathematik, 72:130-138, 1870.
-
(1870)
Grelles Journal F. Mathematik
, vol.72
, pp. 130-138
-
-
Cantor, G.1
-
11
-
-
33947191686
-
Symbolic preprocessing in interval function computing
-
[Cap79] LNCS 72, Marseille
-
[Cap79] G. Caplat. Symbolic preprocessing in interval function computing. In Symbolic and algebraic computation, EUROSAM '79, LNCS 72, pages 369-382, Marseille, 1979.
-
(1979)
Symbolic and Algebraic Computation, EUROSAM '79
, pp. 369-382
-
-
Caplat, G.1
-
12
-
-
80052985571
-
Partial cylindrical algebraic decomposition for quantifier elimination
-
[CH91] Also in [CJ98]
-
[CH91] George E. Collins and Hoon Hong. Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 12:299-328, 1991. Also in [CJ98].
-
(1991)
Journal of Symbolic Computation
, vol.12
, pp. 299-328
-
-
Collins, G.E.1
Hong, H.2
-
13
-
-
0003885601
-
-
[CJ98] B. F. Caviness and J. R. Johnson, editors. Texts and Monographs in Symbolic Computation. Springer
-
[CJ98] B. F. Caviness and J. R. Johnson, editors. Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer, 1998.
-
(1998)
Quantifier Elimination and Cylindrical Algebraic Decomposition
-
-
-
14
-
-
85029837057
-
Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition
-
[Col75] Springer- Verlag, Berlin, Also in [CJ98]
-
[Col75] George E. Collins. Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. In Second GI Conf. Automata Theory and Formal Languages, volume 33 of Lecture Notes in Computer Science, pages 134-183. Springer- Verlag, Berlin, 1975. Also in [CJ98].
-
(1975)
Second GI Conf. Automata Theory and Formal Languages, Volume 33 of Lecture Notes in Computer Science
, vol.33
, pp. 134-183
-
-
Collins, G.E.1
-
15
-
-
33947288116
-
Computing the range of derivatives
-
[CR91] Edgar W. Kaucher, Svetoslav M. Markov, and Günter Mayer, editors, J. C. Baltzer, Basel
-
[CR91] George F. Corliss and Louis B. Rail. Computing the range of derivatives. In Edgar W. Kaucher, Svetoslav M. Markov, and Günter Mayer, editors, Computer Arithmetic, Scientific Computation, and Mathematical Modelling, volume 12 of IMACS Annals on Computing and Applied Mathematics, pages 195-212. J. C. Baltzer, Basel, 1991.
-
(1991)
Computer Arithmetic, Scientific Computation, and Mathematical Modelling, Volume 12 of IMACS Annals on Computing and Applied Mathematics
, vol.12
, pp. 195-212
-
-
Corliss, G.F.1
Rail, L.B.2
-
16
-
-
80052987943
-
Real quantifier elimination is doubly exponential
-
[DH88]
-
[DH88] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly exponential. Journal of Symbolic Computation, 5:29-35, 1988.
-
(1988)
Journal of Symbolic Computation
, vol.5
, pp. 29-35
-
-
Davenport, J.H.1
Heintz, J.2
-
17
-
-
0031212059
-
Simplification of quantifier-free formulae over ordered fields
-
[DS97]
-
[DS97] Andreas Dolzmann and Thomas Sturm. Simplification of quantifier-free formulae over ordered fields. Journal of Symbolic Computation, 24(2):209-231, 1997.
-
(1997)
Journal of Symbolic Computation
, vol.24
, Issue.2
, pp. 209-231
-
-
Dolzmann, A.1
Sturm, T.2
-
18
-
-
0003956960
-
-
[dW93] Springer Verlag, 9th edition
-
[dW93] Van der Waerden. Algebra I. Springer Verlag, 9th edition, 1993.
-
(1993)
Algebra I
-
-
Van Waerden, D.1
-
21
-
-
85035043897
-
A generalized interval arithmetic
-
[Han75] K. Nickel, editor
-
[Han75] E. R. Hansen. A generalized interval arithmetic. In K. Nickel, editor, Interval Mathematics, volume 29 of Lecture Notes in Computer Science, pages 7-18, 1975.
-
(1975)
Interval Mathematics, Volume 29 of Lecture Notes in Computer Science
, vol.29
, pp. 7-18
-
-
Hansen, E.R.1
-
26
-
-
0011471890
-
The STURM library manual - A C++ library for symbolic computation
-
[HNS94] RISC Linz
-
[HNS94] Hoon Hong, Andreas Neubacher, and Volker Stahl. The STURM library manual - a C++ library for symbolic computation. Technical Report 94-30, RISC Linz, 1994.
-
(1994)
Technical Report 94-30
-
-
Hong, H.1
Neubacher, A.2
Stahl, V.3
-
27
-
-
33947246775
-
Unifying theories: A personal statement
-
[Hoa96] December
-
[Hoa96] C.A.R. Hoare. Unifying theories: A personal statement. ACM Computing Surveys, 28A(4), December 1996.
-
(1996)
ACM Computing Surveys
, vol.28 A
, Issue.4
-
-
Hoare, C.A.R.1
-
28
-
-
0006479893
-
Heuristic search strategies for cylindrical algebraic decomposition
-
[Hon92] Jacques Calmet et al., editors
-
[Hon92] H. Hong. Heuristic search strategies for cylindrical algebraic decomposition. In Jacques Calmet et al., editors, Proceedings of Artificial Intelligence and Symbolic Mathematical Computing, Springer Lecture Notes in Computer Science 737, pages 152-165, 1992.
-
(1992)
Proceedings of Artificial Intelligence and Symbolic Mathematical Computing, Springer Lecture Notes in Computer Science
, vol.737
, pp. 152-165
-
-
Hong, H.1
-
30
-
-
0000300972
-
Safe starting regions by fixed points and tightening
-
[HS94]
-
[HS94] Hoon Hong and Volker Stahl. Safe starting regions by fixed points and tightening. Computing, 53:323-335, 1994.
-
(1994)
Computing
, vol.53
, pp. 323-335
-
-
Hong, H.1
Stahl, V.2
-
32
-
-
33947286395
-
The importance of 3-valued notions for interval mathematics
-
[Jah80] Karl L. E. Nickel, editor, Academic Press
-
[Jah80] Karl-Udo Jahn. The importance of 3-valued notions for interval mathematics. In Karl L. E. Nickel, editor, Interval Mathematics, pages 75-98. Academic Press, 1980.
-
(1980)
Interval Mathematics
, pp. 75-98
-
-
Jahn, K.-U.1
-
33
-
-
85032090044
-
Constraint logic programming
-
[JL87] ACM, January
-
[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of the 14th ACM Symposium on Principles of Programming Languages, Munich, Germany, pages 111-119. ACM, January 1987.
-
(1987)
Proceedings of the 14th ACM Symposium on Principles of Programming Languages, Munich, Germany
, pp. 111-119
-
-
Jaffar, J.1
Lassez, J.-L.2
-
34
-
-
0002244789
-
Interval computations: Introduction, uses, and resources
-
[Kea96]
-
[Kea96] R. Baker Kearfott. Interval computations: Introduction, uses, and resources. Euromath Bulletin, 2(1):95-112, 1996.
-
(1996)
Euromath Bulletin
, vol.2
, Issue.1
, pp. 95-112
-
-
Baker Kearfott, R.1
-
35
-
-
33947214141
-
From interval methods of representing uncertainty to a general description of uncertainty
-
[KFG+99] Bhubaneshwar, India
-
[KFG+99] Vladik Kreinovich, Scott Ferson, Lev Ginzburg, Harry Schulte, Matthew R. Barry, and Hung T. Nguyen. From interval methods of representing uncertainty to a general description of uncertainty. In Proceeedings of the International Conference on Information Technology, Bhubaneshwar, India, 1999.
-
(1999)
Proceeedings of the International Conference on Information Technology
-
-
Kreinovich, V.1
Ferson, S.2
Ginzburg, L.3
Schulte, H.4
Barry, M.R.5
Nguyen, H.T.6
-
36
-
-
84985304819
-
Intervallstrukturen geordneter Körper
-
[Kla76]
-
[Kla76] Dieter Klaua. Intervallstrukturen geordneter Körper. (German). Math. Nachr., 75:319-326, 1976.
-
(1976)
Math. Nachr.
, vol.75
, pp. 319-326
-
-
Klaua, D.1
-
37
-
-
33947230365
-
Verallgemeinerte Intervallräume
-
[Klu81]
-
[Klu81] U. Klug. Verallgemeinerte Intervallräume (German). Math. Nachr., 102:347-359, 1981.
-
(1981)
Math. Nachr.
, vol.102
, pp. 347-359
-
-
Klug, U.1
-
38
-
-
55049095614
-
Arithmetic operations in interval spaces
-
[KM80] G. Alefeld and R.D. Grigorieff, editors, Springer
-
[KM80] U. W. Kulisch and W.L. Miranker. Arithmetic operations in interval spaces. In G. Alefeld and R.D. Grigorieff, editors, Fundamentals of Numberical Computation (Computer-Oriented Numerical Analysis), volume 2 of Computing Supplementum, pages 51-67. Springer, 1980.
-
(1980)
Fundamentals of Numberical Computation (Computer-Oriented Numerical Analysis), Volume 2 of Computing Supplementum
, vol.2
, pp. 51-67
-
-
Kulisch, U.W.1
Miranker, W.L.2
-
41
-
-
33847243820
-
When is the product of intervals also an interval
-
[Kos98]
-
[Kos98] Olga Kosheleva. When is the product of intervals also an interval. Reliable Computing, 4:179-190, 1998.
-
(1998)
Reliable Computing
, vol.4
, pp. 179-190
-
-
Kosheleva, O.1
-
42
-
-
0039368823
-
Complex sector arithmetic
-
[KU80]
-
[KU80] R. Klatte and Ch. Ullrich. Complex sector arithmetic. Computing, 24:139-148, 1980.
-
(1980)
Computing
, vol.24
, pp. 139-148
-
-
Klatte, R.1
Ullrich, Ch.2
-
44
-
-
0004293209
-
-
[Moo66] Prentice Hall, Englewood Cliffs, NJ
-
[Moo66] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.
-
(1966)
Interval Analysis
-
-
Moore, R.E.1
-
47
-
-
0006396783
-
-
[Neu97] PhD thesis, Research Institute for Symbolic Computation - Universität Linz, October
-
[Neu97] Andreas Neubacher. Parametric Robust Stability by Quantifier Elimination. PhD thesis, Research Institute for Symbolic Computation - Universität Linz, October 1997.
-
(1997)
Parametric Robust Stability by Quantifier Elimination
-
-
Neubacher, A.1
-
48
-
-
29044441905
-
Arithmetic of complex sets
-
[Nic80]
-
[Nic80] K. Nickel. Arithmetic of complex sets. Computing, 24:97-105, 1980.
-
(1980)
Computing
, vol.24
, pp. 97-105
-
-
Nickel, K.1
-
49
-
-
33947205804
-
Why interval? because if we allow other sets, tractable problems become intractable
-
[NN97] University of Texas at El Paso, El Paso
-
[NN97] Monica Nogueira and Amarendra Nandigam. Why interval? Because if we allow other sets, tractable problems become intractable. Technical Report UTEP-CS-97-7, University of Texas at El Paso, El Paso, 1997.
-
(1997)
Technical Report UTEP-CS-97-7
-
-
Nogueira, M.1
Nandigam, A.2
-
50
-
-
0001461327
-
Set-valued logic algebra: A carrier computing foundation
-
[NRSS97]
-
[NRSS97] Alioune Ngom, Corina Reischer, Dan A. Simovici, and Ivan Stojmenović. Set-valued logic algebra: A carrier computing foundation. Multiple Valued Logic, 2(3): 183-216, 1997.
-
(1997)
Multiple Valued Logic
, vol.2
, Issue.3
, pp. 183-216
-
-
Ngom, A.1
Reischer, C.2
Simovici, D.A.3
Stojmenović, I.4
-
51
-
-
0000110250
-
A power domain construction
-
[Plo76]
-
[Plo76] G. Plotkin. A power domain construction. SIAM Journal on Computing, 5(3):452-487, 1976.
-
(1976)
SIAM Journal on Computing
, vol.5
, Issue.3
, pp. 452-487
-
-
Plotkin, G.1
-
55
-
-
0003924168
-
Convergence of quantified constraint solving by approximate quantifiers
-
[Rat00c] Research Institute for Symbolic Computation (RISC) - Linz, Submitted for Publication
-
[Rat00c] Stefan Ratschan. Convergence of quantified constraint solving by approximate quantifiers. Technical Report 00-23, Research Institute for Symbolic Computation (RISC) - Linz, 2000. Submitted for Publication.
-
(2000)
Technical Report 00-23
-
-
Ratschan, S.1
-
56
-
-
85025505234
-
On the computational complexity and geometry of the first-order theory of the reals
-
[Ren92] March
-
[Ren92] James Renegar. On the computational complexity and geometry of the first-order theory of the reals. Journal of Symbolic Computation, 13(3):255-352, March 1992. Part I-III.
-
(1992)
Journal of Symbolic Computation
, vol.13
, Issue.3 PART I-III
, pp. 255-352
-
-
Renegar, J.1
-
57
-
-
0015008327
-
Complex interval arithmetic
-
[RL71]
-
[RL71] J. Rokne and P. Lancaster. Complex interval arithmetic. Comm. ACM, 14:111-112, 1971.
-
(1971)
Comm. ACM
, vol.14
, pp. 111-112
-
-
Rokne, J.1
Lancaster, P.2
-
60
-
-
0004176399
-
-
[Sta96] PhD thesis, Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria
-
[Sta96] Volker Stahl. Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations. PhD thesis, Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria, 1996.
-
(1996)
Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations
-
-
Stahl, V.1
-
62
-
-
0002674493
-
Many-valued logic
-
[Urq86] D. Gabbay and F. Guenther, editors, chapter III.2, D. Reidel Publishing Company
-
[Urq86] Alasdair Urquhart. Many-valued logic. In D. Gabbay and F. Guenther, editors, Handbook of Philosophical Logic, Vol. III: Alternatives in Classical Logic, chapter III.2, pages 71-116. D. Reidel Publishing Company, 1986.
-
(1986)
Handbook of Philosophical Logic, Vol. III: Alternatives in Classical Logic
, vol.3
, pp. 71-116
-
-
Urquhart, A.1
-
63
-
-
0002355108
-
The complexity of linear problems in fields
-
[Wei88]
-
[Wei88] Volker Weispfenning. The complexity of linear problems in fields. Journal of Symbolic Computation, 5(1-2):3-27, 1988.
-
(1988)
Journal of Symbolic Computation
, vol.5
, Issue.1-2
, pp. 3-27
-
-
Weispfenning, V.1
-
64
-
-
0031084160
-
Algebraic approaches to nondeterminism: An overview
-
[WM97]
-
[WM97] Michal Walicki and Sigurd Meldal. Algebraic approaches to nondeterminism: An overview. ACM Computing Surveys, 29(1), 1997.
-
(1997)
ACM Computing Surveys
, vol.29
, Issue.1
-
-
Walicki, M.1
Meldal, S.2
|