메뉴 건너뛰기




Volumn 3, Issue 2, 1998, Pages 106-109

Newton-like iteration method for solving algebraic equations

Author keywords

Newton like iteration method; Nonlinearity; Perturbation method

Indexed keywords

ALGEBRA; APPROXIMATION THEORY; MATHEMATICAL MODELS; NONLINEAR EQUATIONS; PERTURBATION TECHNIQUES;

EID: 0003196951     PISSN: 10075704     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1007-5704(98)90073-9     Document Type: Article
Times cited : (62)

References (4)
  • 1
    • 38149146256 scopus 로고
    • An optimal multiple root-finding method of order three
    • Osada, N., An optimal multiple root-finding method of order three, J. Appl. Comput. Math., 1994. 51:131-133.
    • (1994) J. Appl. Comput. Math. , vol.51 , pp. 131-133
    • Osada, N.1
  • 2
    • 0010632616 scopus 로고    scopus 로고
    • On the construction of simultaneous methods for multiple zeros
    • Petkovic, L., et al., On the construction of simultaneous methods for multiple zeros, Nonlinear Analysis, Theory, Methods & Applications, 1997, 30:669-676.
    • (1997) Nonlinear Analysis, Theory, Methods & Applications , vol.30 , pp. 669-676
    • Petkovic, L.1
  • 3
    • 0000615571 scopus 로고
    • An approximate solution technique not depending on small parameters: A special example
    • Liao, S. J., An approximate solution technique not depending on small parameters: a special example, Int. J. Non-Linear Mechanics, 1995, 30:371-380.
    • (1995) Int. J. Non-Linear Mechanics , vol.30 , pp. 371-380
    • Liao, S.J.1
  • 4
    • 0002689317 scopus 로고    scopus 로고
    • New research directions in singular perturbation theory: Artificial parameter approach and inverse-perturbation technique
    • Shanghai, (in Chinese)
    • Liu, G. L., New Research Directions in Singular Perturbation Theory: Artificial Parameter Approach and Inverse-Perturbation Technique, Conf. of 7th Modern Mathematics and Mechanics, 1997, Shanghai, 47-53 (in Chinese).
    • (1997) Conf. of 7th Modern Mathematics and Mechanics , pp. 47-53
    • Liu, G.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.