-
1
-
-
0003444646
-
-
and FDP Research Group, Cambridge, MA: MIT Press, 1987, vol. 1 and 2.
-
D. E. Rumelhart, J. L. McClelland, and FDP Research Group, Parallel Distributed Processing. Explorations in the Microstructure of Cognition. Cambridge, MA: MIT Press, 1987, vol. 1 and 2.
-
Parallel Distributed Processing. Explorations in the Microstructure of Cognition.
-
-
Rumelhart, D.E.1
McClelland, J.L.2
-
4
-
-
0002127281
-
-
in Advances in Neural Information Processing Systems, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, vol. 1.
-
E. B. Baum and D. Haussler, What size net gives valid generalization?, in Advances in Neural Information Processing Systems, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, vol. 1.
-
What Size Net Gives Valid Generalization?
-
-
Baum, E.B.1
Haussler, D.2
-
6
-
-
0023331258
-
-
IEEE Acoust., Speech, Signal Processing Mag., vol. 7, pp. 4-22, Apr. 1987.
-
R. P. Lippmann, An introduction to computing with neural nets, IEEE Acoust., Speech, Signal Processing Mag., vol. 7, pp. 4-22, Apr. 1987.
-
An Introduction to Computing with Neural Nets
-
-
Lippmann, R.P.1
-
7
-
-
33747749161
-
-
in Proc. Int. Conf. Artificial Neural Networks, vol. 1, Sorrento, Italy, 1994, pp. 493-496.
-
K. Hagiwara and S. Usui, Numerical experiments on the information criteria for layered feedforward neural nets, in Proc. Int. Conf. Artificial Neural Networks, vol. 1, Sorrento, Italy, 1994, pp. 493-496.
-
Numerical Experiments on the Information Criteria for Layered Feedforward Neural Nets
-
-
Hagiwara, K.1
Usui, S.2
-
9
-
-
0040966448
-
-
in Digital Biosignal Processing, R. Weitkunat, Ed. New York: Elsevier, 1991, pp. 157-179.
-
B. H. Jansen, Time series analysis by means of linear modeling, in Digital Biosignal Processing, R. Weitkunat, Ed. New York: Elsevier, 1991, pp. 157-179.
-
Time Series Analysis by Means of Linear Modeling
-
-
Jansen, B.H.1
-
10
-
-
33747797038
-
-
in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 601-604.
-
M. Cottrell, B. Girard, Y Girard, M. Mangeas, and C. Muller, SSM: A statistical stepwise method for weight elimination, in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 601-604.
-
SSM: A Statistical Stepwise Method for Weight Elimination
-
-
Cottrell, M.1
Girard, B.2
Girard, Y.3
Mangeas, M.4
Muller, C.5
-
11
-
-
0028727934
-
-
in Proc. Int. Conf. Artificial Neural Networks, J. Vlontzos, J. N. Hwang, and E. Wilson, Eds. Ermioni, Greece, 1994.
-
J. Larsen and L. K. Hansen, Generalization performance of regularized neural network models, in Proc. Int. Conf. Artificial Neural Networks, J. Vlontzos, J. N. Hwang, and E. Wilson, Eds. Ermioni, Greece, 1994.
-
Generalization Performance of Regularized Neural Network Models
-
-
Larsen, J.1
Hansen, L.K.2
-
12
-
-
0344030230
-
-
Dept. Math. Eng. Inform. Phys., Faculty Eng., Univ. Tokyo, Preprint, 1992.
-
N. Murata, S. Yoshizawa, and S. I. Amari, Network information criterion-determining the number of hidden units for an artificial network model, Dept. Math. Eng. Inform. Phys., Faculty Eng., Univ. Tokyo, Preprint, 1992.
-
Network Information Criterion-determining the Number of Hidden Units for An Artificial Network Model
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.I.3
-
13
-
-
33747774204
-
-
in Artificial Intelligence Frontiers in Statistics, D. J. Hand, Ed. London, U.K.: Chapman & Hall, 1993, pp. 241-255.
-
H. Gish, Maximum likelihood training of neural networks, in Artificial Intelligence Frontiers in Statistics, D. J. Hand, Ed. London, U.K.: Chapman & Hall, 1993, pp. 241-255.
-
Maximum Likelihood Training of Neural Networks
-
-
Gish, H.1
-
14
-
-
33747783997
-
-
in Proc. Int. Conf. Artificial Neural Networks, Amsterdam, The Netherlands, 1993.
-
M. Lehtokangas, J. Saarinen, and P. Huuhta, Neural network modeling and prediction of multivariate time series using predictive MDL principle, in Proc. Int. Conf. Artificial Neural Networks, Amsterdam, The Netherlands, 1993.
-
Neural Network Modeling and Prediction of Multivariate Time Series Using Predictive MDL Principle
-
-
Lehtokangas, M.1
Saarinen, J.2
Huuhta, P.3
-
15
-
-
33747789615
-
-
in Proc. IEEE Workshop Nonlinear Digital Signal Process., Tampere, Finland, 1993, pp. 7.2.2.1-7.2.2.6.
-
_, Neural network prediction of nonlinear time series using predictive MDL principle, in Proc. IEEE Workshop Nonlinear Digital Signal Process., Tampere, Finland, 1993, pp. 7.2.2.1-7.2.2.6.
-
Neural Network Prediction of Nonlinear Time Series Using Predictive MDL Principle
-
-
-
17
-
-
0028255785
-
-
Neural Networks, vol. 7, no. 1, pp. 89-99, 1994.
-
T. M. Nahban and A. Y. Zomaya, Toward generating neural network structures for function approximation, Neural Networks, vol. 7, no. 1, pp. 89-99, 1994.
-
Toward Generating Neural Network Structures for Function Approximation
-
-
Nahban, T.M.1
Zomaya, A.Y.2
-
19
-
-
33747782954
-
-
in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 793-796.
-
E. Fiesler, Comparative bibliography of ontogenic neural networks, in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 793-796.
-
Comparative Bibliography of Ontogenic Neural Networks
-
-
Fiesler, E.1
-
20
-
-
0003979924
-
-
Reading, MA: Addison-Wesley, 1991.
-
J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural Computation. Reading, MA: Addison-Wesley, 1991.
-
Introduction to the Theory of Neural Computation.
-
-
Hertz, J.1
Krogh, A.2
Palmer, R.G.3
-
22
-
-
33747757706
-
-
in Proc. Int Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 731-734.
-
F. M. Frattale Mascioli, G. Martinelli, and G. Lazzaro, Comparison of constructive algorithms for neural networks, in Proc. Int Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 731-734.
-
Comparison of Constructive Algorithms for Neural Networks
-
-
Frattale Mascioli, F.M.1
Martinelli, G.2
Lazzaro, G.3
-
23
-
-
0003420910
-
-
School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-90-100, 1991.
-
S. E. Fahlman and C. Lebiere, The cascade-correlation learning architecture, School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-90-100, 1991.
-
The Cascade-correlation Learning Architecture
-
-
Fahlman, S.E.1
Lebiere, C.2
-
24
-
-
33747791767
-
-
in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 573-576.
-
G. P. Drago, Cascade correlation convergence theorem, in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 573-576.
-
Cascade Correlation Convergence Theorem
-
-
Drago, G.P.1
-
29
-
-
33747776179
-
-
in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 735-738.
-
J. M. Lange, H.-M. Voigt, and D. Wolf, Task decomposition and correlations in growing artificial neural networks, in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 735-738.
-
Task Decomposition and Correlations in Growing Artificial Neural Networks
-
-
Lange, J.M.1
Voigt, H.-M.2
Wolf, D.3
-
30
-
-
0028319326
-
-
Neural Networks, vol. 7, no. 2, pp. 291-300, 1994.
-
M. T. Tham, Z. Wang, C. Di Massimo, and J. Morris, A procedure for determining the topology of multilayer feedforward neural networks, Neural Networks, vol. 7, no. 2, pp. 291-300, 1994.
-
A Procedure for Determining the Topology of Multilayer Feedforward Neural Networks
-
-
Tham, M.T.1
Wang, Z.2
Di Massimo, C.3
Morris, J.4
-
31
-
-
0027662338
-
-
IEEE Trans. Neural Networks, vol. 4, pp. 740-747, Sept. 1996.
-
R. Reed, Pruning algorithms-A survey, IEEE Trans. Neural Networks, vol. 4, pp. 740-747, Sept. 1996.
-
Pruning Algorithms-A Survey
-
-
Reed, R.1
-
32
-
-
33747777471
-
-
Electron. Inst., Tech. Univ. Denmark, Lyngby, Preprint, 1993.
-
J. Gorodkin, L. K. Hansen, A. Krogh, C. Svarer, and O. Winther, A quantitative study of pruning by optimal brain damage, Electron. Inst., Tech. Univ. Denmark, Lyngby, Preprint, 1993.
-
A Quantitative Study of Pruning by Optimal Brain Damage
-
-
Gorodkin, J.1
Hansen, L.K.2
Krogh, A.3
Svarer, C.4
Winther, O.5
-
33
-
-
0025889440
-
-
IEEE Trans. Syst., Man, Cybern., vol. 21, pp. 273-280, Jan. 1991.
-
J. R. Movellan and J. K. Kruschke, Benefits of the gain: Speeded learning and minimal hidden layers in back propagation networks, IEEE Trans. Syst., Man, Cybern., vol. 21, pp. 273-280, Jan. 1991.
-
Benefits of the Gain: Speeded Learning and Minimal Hidden Layers in Back Propagation Networks
-
-
Movellan, J.R.1
Kruschke, J.K.2
-
34
-
-
0000494466
-
-
in Advances in Neural Information Processing Systems, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990.
-
J. S. Denker, Y Le Cun, and S. A. Solla, Optimal brain damage, in Advances in Neural Information Processing Systems, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990.
-
Optimal Brain Damage
-
-
Denker, J.S.1
Le Cun, Y.2
Solla, S.A.3
-
35
-
-
0028722263
-
-
in Proc. IEEE Workshop Neural Networks Signal Process., Ermioni, Greece, 1994.
-
L. K. Hansen, C. E. Rasmussen, C. Svarer, and J. Larsen, Adaptive regularization, in Proc. IEEE Workshop Neural Networks Signal Process., Ermioni, Greece, 1994.
-
Adaptive Regularization
-
-
Hansen, L.K.1
Rasmussen, C.E.2
Svarer, C.3
Larsen, J.4
-
36
-
-
33747802763
-
-
in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 327-330.
-
T. Ciblas, F. F. Souli, P. Gallinari, and S. Raudys, Variable selection with optimal cell damage, in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 327-330.
-
Variable Selection with Optimal Cell Damage
-
-
Ciblas, T.1
Souli, F.F.2
Gallinari, P.3
Raudys, S.4
-
37
-
-
33747776833
-
-
in Proc. NIPS, S. J. Hansone/aJ.,Eds.. San Mateo, CA, 1993.
-
B. Hassibi and D. G. Stork et al, Second order derivatives for network pruning: Optimal brain surgeon,in Proc. NIPS, S. J. Hansone/aJ.,Eds.. San Mateo, CA, 1993.
-
Second Order Derivatives for Network Pruning: Optimal Brain Surgeon
-
-
Hassibi, B.1
Stork, D.G.2
-
39
-
-
33747790939
-
-
Electron. Inst., Tech. Univ. Denmark, Lyngby, Preprint, 1993.
-
L. K. Hansen and C. E. Rasmussen, Pruning from adaptive regularization, Electron. Inst., Tech. Univ. Denmark, Lyngby, Preprint, 1993.
-
Pruning from Adaptive Regularization
-
-
Hansen, L.K.1
Rasmussen, C.E.2
-
42
-
-
33747772767
-
-
in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 780-797.
-
M. W. Pedersen and L. K. Hansen, Controlled growth of cascade correlation nets, in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, 1994, pp. 780-797.
-
Controlled Growth of Cascade Correlation Nets
-
-
Pedersen, M.W.1
Hansen, L.K.2
-
43
-
-
0000473247
-
-
in Advances in Neural Information Processing Systems, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, vol. 1.
-
Y. Chauvin, A back-propagation algorithm with optimal use of hidden units, in Advances in Neural Information Processing Systems, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, vol. 1.
-
A Back-propagation Algorithm with Optimal Use of Hidden Units
-
-
Chauvin, Y.1
-
44
-
-
33747771770
-
-
Neural Comput., vol. 2, no. 2, pp. 188-197, 1990.
-
D. Psaltis, C. Ji, and R. R. Snapp, Generalizing smoothness constraints from discrete samples, Neural Comput., vol. 2, no. 2, pp. 188-197, 1990.
-
Generalizing Smoothness Constraints from Discrete Samples
-
-
Psaltis, D.1
Ji, C.2
Snapp, R.R.3
-
45
-
-
0029180618
-
-
in P roc. IEEE Int. Symp. Circuits Syst., Seattle, WA, 1995, pp. 121-124.
-
S. Yasui, A. Malinowski, and J. M. Zurada, Convergence suppression and divergence facilitation: New approach to prune hidden layer and weights of feedforward neural networks, in P roc. IEEE Int. Symp. Circuits Syst., Seattle, WA, 1995, pp. 121-124.
-
Convergence Suppression and Divergence Facilitation: New Approach to Prune Hidden Layer and Weights of Feedforward Neural Networks
-
-
Yasui, S.1
Malinowski, A.2
Zurada, J.M.3
-
46
-
-
0000900876
-
-
in Advances in Neural Information Processing Systems, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989.
-
M. C. Mozer and P. Smolensky, Skeletonization: A technique for trimming the fat from a network via relevance assessment, in Advances in Neural Information Processing Systems, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989.
-
Skeletonization: A Technique for Trimming the Fat from A Network Via Relevance Assessment
-
-
Mozer, M.C.1
Smolensky, P.2
-
47
-
-
0026401070
-
-
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Toronto, Ont., Canada, 1991.
-
Q. Xue, Y. H. Hu, and W. J. Tompkins, Structural simplification of a feedforward, multilayer perceptron artificial neural network, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Toronto, Ont., Canada, 1991.
-
Structural Simplification of A Feedforward, Multilayer Perceptron Artificial Neural Network
-
-
Xue, Q.1
Hu, Y.H.2
Tompkins, W.J.3
-
48
-
-
0026627410
-
-
in Proc. IEEE Conf. Neural Networks, vol. 2, Seattle, WA, 1991, pp. 163-168.
-
S. Y Kung and Y H. Hu, A Frobenius approximation reduction method (FARM) for determining optimal number of hidden units, in Proc. IEEE Conf. Neural Networks, vol. 2, Seattle, WA, 1991, pp. 163-168.
-
A Frobenius Approximation Reduction Method (FARM) for Determining Optimal Number of Hidden Units
-
-
Kung, S.Y.1
Hu, Y.H.2
-
49
-
-
0025964567
-
-
Neural Networks, no. 4, pp. 61-66, 1991.
-
K. Yamashita, Y Hirose, and S. Hijiya, Backpropagation algorithm which varies the number of hidden units, Neural Networks, no. 4, pp. 61-66, 1991.
-
Backpropagation Algorithm Which Varies the Number of Hidden Units
-
-
Yamashita, K.1
Hirose, Y.2
Hijiya, S.3
-
52
-
-
0028748949
-
-
Neural Networks, vol. 7, no. 9, pp. 1441-1460, Aug. 1994.
-
B. Fritzke, Growing cell structures, a self-organizing network for unsupervised and supervised learning, Neural Networks, vol. 7, no. 9, pp. 1441-1460, Aug. 1994.
-
Growing Cell Structures, A Self-organizing Network for Unsupervised and Supervised Learning
-
-
Fritzke, B.1
-
53
-
-
33747811521
-
-
in Proc. IEEE Workshop Nonlinear Signal Image Process., vol. 2, Neos Marmaras, Greece, 1995, pp. 579-582.
-
A. Dumitras., A. T. Murgan, and V. Läzärescu, A growing-decreasing method for designing neural filters, in Proc. IEEE Workshop Nonlinear Signal Image Process., vol. 2, Neos Marmaras, Greece, 1995, pp. 579-582.
-
A Growing-decreasing Method for Designing Neural Filters
-
-
Dumitras, A.1
Murgan, A.T.2
Läzärescu, V.3
-
54
-
-
0028753578
-
-
Neural Networks, vol. 7, no. 9, pp. 1477-1489, Aug. 1994.
-
D. W. Thomas, Y Q. Chen, and M. S. Nixon, Generating-shrinking algorithm for learning arbitrary classification, Neural Networks, vol. 7, no. 9, pp. 1477-1489, Aug. 1994.
-
Generating-shrinking Algorithm for Learning Arbitrary Classification
-
-
Thomas, D.W.1
Chen, Y.Q.2
Nixon, M.S.3
-
55
-
-
0028208150
-
-
Neural Networks, vol. 7, no. 1, pp. 129-140, 1994.
-
E. B. Bartlett, Dynamic node architecture learning: An information theoretic approach, Neural Networks, vol. 7, no. 1, pp. 129-140, 1994.
-
Dynamic Node Architecture Learning: An Information Theoretic Approach
-
-
Bartlett, E.B.1
-
56
-
-
0029218112
-
-
in Proc. IEEE Workshop Neural Networks Signal Process., 1995, pp. 484-493.
-
M. Hintz-Madsen, L. K. Hansen, and J. Larsen et al., Design and evaluation of neural classifiers-Application to skin lesion classification, in Proc. IEEE Workshop Neural Networks Signal Process., 1995, pp. 484-493.
-
Design and evaluation of neural classifiers-Application to skin lesion classification
-
-
Hintz-Madsen, M.1
Hansen, L.K.2
Larsen, J.3
-
58
-
-
0029373655
-
-
IEEE Trans. Neural Networks, vol. 6, pp. 1249-1254, Sept. 1995.
-
N.S.Cardell, W. H. Joerding, and Y Li, Symmetry constraints for feedforward network models of gradient systems, IEEE Trans. Neural Networks, vol. 6, pp. 1249-1254, Sept. 1995.
-
Symmetry Constraints for Feedforward Network Models of Gradient Systems
-
-
Cardell, N.S.1
Joerding, W.H.2
Li, Y.3
-
60
-
-
0029273817
-
-
IEEE Trans. Signal Processing, vol. 43, pp. 591-603, Mar. 1995.
-
R. Yang, L. Yin, M. Gabbouj, J. Astola, and Y Neuvo, Optimal weighted median filtering under symmetry constraints, IEEE Trans. Signal Processing, vol. 43, pp. 591-603, Mar. 1995.
-
Optimal Weighted Median Filtering under Symmetry Constraints
-
-
Yang, R.1
Yin, L.2
Gabbouj, M.3
Astola, J.4
Neuvo, Y.5
-
63
-
-
0003582061
-
-
Piscataway, NJ: IEEE, 1997.
-
P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamentals. Piscataway, NJ: IEEE, 1997.
-
DSP Processor Fundamentals.
-
-
Lapsley, P.1
Bier, J.2
Shoham, A.3
Lee, E.A.4
-
66
-
-
0028497221
-
-
IEEE Trans. Neural Networks, vol. 5, pp. 684-697, Sept. 1994.
-
K. Diamantaras and S.-Y Kung, Multilayer neural networks for reduced-rank approximation, IEEE Trans. Neural Networks, vol. 5, pp. 684-697, Sept. 1994.
-
Multilayer Neural Networks for Reduced-rank Approximation
-
-
Diamantaras, K.1
Kung, S.-Y.2
-
67
-
-
0030385429
-
-
in Proc. Third Int. Conf. Signal Process., vol. 2, Beijing, China, 1996, pp. 1429-1432.
-
A. Dumitras. and V. Läzärescu, MOBD: A neural network algorithm with symmetry constraints, in Proc. Third Int. Conf. Signal Process., vol. 2, Beijing, China, 1996, pp. 1429-1432.
-
MOBD: A Neural Network Algorithm with Symmetry Constraints
-
-
Dumitras, A.1
Läzärescu, V.2
-
68
-
-
0029406008
-
-
IEEE Trans. Neural Networks, vol. 6, pp. 1375-1385, Nov. 1995.
-
A. A. Ghorbani and V. C. Bhavsar, Incremental communication for multilayer neural networks, IEEE Trans. Neural Networks, vol. 6, pp. 1375-1385, Nov. 1995.
-
Incremental Communication for Multilayer Neural Networks
-
-
Ghorbani, A.A.1
Bhavsar, V.C.2
|