메뉴 건너뛰기




Volumn 123, Issue 1-4, 1998, Pages 271-290

Geometric phases, reduction and Lie-Poisson structure for the resonant three-wave interaction

Author keywords

Geometric phase; Integrable systems; Lax equation; Lie Poisson; Nonlinear waves; Reduction; Three wave interaction

Indexed keywords


EID: 0003149163     PISSN: 01672789     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-2789(98)00127-4     Document Type: Article
Times cited : (46)

References (42)
  • 1
    • 0000018057 scopus 로고
    • Resonant interaction of wave packets in nonlinear media
    • V.E. Zakharov, S.V. Manakov, Resonant interaction of wave packets in nonlinear media, Sov. Phys. JETP Lett. 18 (1973) 243-245.
    • (1973) Sov. Phys. JETP Lett. , vol.18 , pp. 243-245
    • Zakharov, V.E.1    Manakov, S.V.2
  • 3
    • 0000085256 scopus 로고
    • A tri-Hamiltonian formulation of the self-induced transparency equations
    • A.P. Fordy, D.D. Holm, A tri-Hamiltonian formulation of the self-induced transparency equations, Phys. Lett. A. 160 (1991) 143-148.
    • (1991) Phys. Lett. A. , vol.160 , pp. 143-148
    • Fordy, A.P.1    Holm, D.D.2
  • 4
    • 0038868531 scopus 로고
    • Resonant triad interactions in symmetric systems
    • J. Guckenheimer, A. Mahalov, Resonant triad interactions in symmetric systems, Physica D 54 (1992) 267-310.
    • (1992) Physica D , vol.54 , pp. 267-310
    • Guckenheimer, J.1    Mahalov, A.2
  • 5
    • 0000633938 scopus 로고
    • Multiple Lie-Poisson structures, reductions, and geometric phases for the Maxwell-Bloch traveling wave equations
    • D. David, D.D. Holm, Multiple Lie-Poisson structures, reductions, and geometric phases for the Maxwell-Bloch traveling wave equations, J. Nonlinear Sci. 2 (1992) 241-262.
    • (1992) J. Nonlinear Sci. , vol.2 , pp. 241-262
    • David, D.1    Holm, D.D.2
  • 7
    • 36749121906 scopus 로고
    • Resonantly coupled nonlinear evolution equations
    • M.J. Ablowitz, R. Haberman, Resonantly coupled nonlinear evolution equations, J. Math. Phys. 16 (1975) 2301-2305.
    • (1975) J. Math. Phys. , vol.16 , pp. 2301-2305
    • Ablowitz, M.J.1    Haberman, R.2
  • 8
    • 0016926497 scopus 로고
    • The three-wave interaction - A nondispersive phenomenon
    • D.J. Kaup, The three-wave interaction - a nondispersive phenomenon, Stud. Appl. Math. 55 (1976) 9-44.
    • (1976) Stud. Appl. Math. , vol.55 , pp. 9-44
    • Kaup, D.J.1
  • 9
    • 35949034292 scopus 로고
    • Space-time evolution of nonlinear three-wave interactions. I. Interaction in a homogeneous medium
    • D.J. Kaup, A.H. Reiman, A. Bers, Space-time evolution of nonlinear three-wave interactions. I. Interaction in a homogeneous medium, Rev. Modern Phys. 51 (1979) 275-309.
    • (1979) Rev. Modern Phys. , vol.51 , pp. 275-309
    • Kaup, D.J.1    Reiman, A.H.2    Bers, A.3
  • 10
    • 0007649593 scopus 로고
    • The solution of the general initial value problem for the full three dimensional three-wave resonant interaction
    • V.E. Zakharov, S.V. Manakov (Eds.), Kiev, 1979, North-Holland, Amsterdam
    • D.J. Kaup, The solution of the general initial value problem for the full three dimensional three-wave resonant interaction, in: V.E. Zakharov, S.V. Manakov (Eds.), Proceedings of the Joint US-USSR Symposium on Soliton Theory, Kiev, 1979, North-Holland, Amsterdam, 1981, pp. 374-395.
    • (1981) Proceedings of the Joint US-USSR Symposium on Soliton Theory , pp. 374-395
    • Kaup, D.J.1
  • 14
    • 0000413458 scopus 로고
    • How much does a rigid body rotate? A Berry's phase from the 18th century
    • R. Montgomery, How much does a rigid body rotate? A Berry's phase from the 18th century, Am. J. Phys. 59 (1991) 394-398.
    • (1991) Am. J. Phys. , vol.59 , pp. 394-398
    • Montgomery, R.1
  • 15
    • 84975673323 scopus 로고
    • Relativistic solitary-wave solutions of the beat-wave equations
    • C.J. McKinstrie, Relativistic solitary-wave solutions of the beat-wave equations, Phys. Fluids 31 (1988) 288-297.
    • (1988) Phys. Fluids , vol.31 , pp. 288-297
    • McKinstrie, C.J.1
  • 16
    • 4243980670 scopus 로고
    • Solitary-wave solutions of the generalised three-wave and four-wave equations
    • C.J. McKinstrie, G.G Luther, Solitary-wave solutions of the generalised three-wave and four-wave equations, Phys. Lett. A 127 (1988) 14-18.
    • (1988) Phys. Lett. A , vol.127 , pp. 14-18
    • McKinstrie, C.J.1    Luther, G.G.2
  • 17
    • 21144477913 scopus 로고
    • The nonlinear detuning of three-wave interactions
    • C.J. McKinstrie, X.D. Cao, The nonlinear detuning of three-wave interactions, J. Opt. Soc. Am. B 10 (1993) 898-912.
    • (1993) J. Opt. Soc. Am. B , vol.10 , pp. 898-912
    • McKinstrie, C.J.1    Cao, X.D.2
  • 20
    • 33748853933 scopus 로고
    • Note on the integration of Euler's equations of the dynamics of and n-dimensional rigid body
    • S.V. Manakov, Note on the integration of Euler's equations of the dynamics of and n-dimensional rigid body, Func. Anal. Appl. 10 (1976) 328-329.
    • (1976) Func. Anal. Appl. , vol.10 , pp. 328-329
    • Manakov, S.V.1
  • 21
    • 38249019449 scopus 로고
    • On resonant classical Hamiltonians with n frequencies
    • M. Kummer, On resonant classical Hamiltonians with n frequencies. J. Diff. Eqs. 83 (1990) 220-243.
    • (1990) J. Diff. Eqs. , vol.83 , pp. 220-243
    • Kummer, M.1
  • 22
    • 5744254124 scopus 로고
    • Integrable and chaotic polarization dynamics in nonlinear optical beams
    • D. David, D.D. Holm, M.V. Tratnik, Integrable and chaotic polarization dynamics in nonlinear optical beams, Phys. Lett. A 137 (1989) 355-364.
    • (1989) Phys. Lett. A , vol.137 , pp. 355-364
    • David, D.1    Holm, D.D.2    Tratnik, M.V.3
  • 23
    • 0011581571 scopus 로고
    • Normal forms for three-dimensional parametric instabilities in ideal hydrodynamics
    • E. Knobloch, A. Mahalov, J.E. Marsden, Normal forms for three-dimensional parametric instabilities in ideal hydrodynamics, Physica D 73 (1994) 49-81.
    • (1994) Physica D , vol.73 , pp. 49-81
    • Knobloch, E.1    Mahalov, A.2    Marsden, J.E.3
  • 24
    • 0030394634 scopus 로고    scopus 로고
    • Branches of stable three-tori using Hamiltonian methods in Hopf bifurcation on a rhombic lattice
    • V Kirk, J.E. Marsden, M. Silber, Branches of stable three-tori using Hamiltonian methods in Hopf bifurcation on a rhombic lattice, Dyn. Stab. Systems 11 (1996) 267-302.
    • (1996) Dyn. Stab. Systems , vol.11 , pp. 267-302
    • Kirk, V.1    Marsden, J.E.2    Silber, M.3
  • 25
    • 0000318075 scopus 로고    scopus 로고
    • Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems
    • G. Haller, W. Wiggins, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D 90 (1996) 319-365.
    • (1996) Physica D , vol.90 , pp. 319-365
    • Haller, G.1    Wiggins, W.2
  • 27
    • 49049140896 scopus 로고
    • Reduction of the semisimple 1:1 resonance
    • R. Cushman, D.L. Rod, Reduction of the semisimple 1:1 resonance, Physica D 6 (1982) 105-112.
    • (1982) Physica D , vol.6 , pp. 105-112
    • Cushman, R.1    Rod, D.L.2
  • 29
    • 0016568176 scopus 로고
    • An interaction of three resonant modes in a nonlinear lattice
    • M. Kummer, An interaction of three resonant modes in a nonlinear lattice, J. Math. Anal. Appl. 52 (1975) 64.
    • (1975) J. Math. Anal. Appl. , vol.52 , pp. 64
    • Kummer, M.1
  • 30
    • 49549151837 scopus 로고
    • Reduction of symplectic manifolds with symmetry
    • J.E. Marsden, A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974) 121-130.
    • (1974) Rep. Math. Phys. , vol.5 , pp. 121-130
    • Marsden, J.E.1    Weinstein, A.2
  • 34
    • 0031093783 scopus 로고    scopus 로고
    • Polarization of light and topological phases
    • R. Bhandari, Polarization of light and topological phases, Phys. Rep. 281 (1997) 2-64.
    • (1997) Phys. Rep. , vol.281 , pp. 2-64
    • Bhandari, R.1
  • 35
    • 34250229086 scopus 로고
    • On the variation in the cohomology of the symplectic form of the reduced phase space
    • J.J. Duistermaat, G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259-268.
    • (1982) Invent. Math. , vol.69 , pp. 259-268
    • Duistermaat, J.J.1    Heckman, G.J.2
  • 37
    • 0001799504 scopus 로고
    • V.I. Arnold, A.B. Givantal, Symplectic geometry, Itogi Nauki. Fundamentalnye Napravleniya 4 (1985) VINITI, Moscow, 5-139; English transl.: Encyclopedia of Math. Sci. 4 (1990) 1-136.
    • (1990) Encyclopedia of Math. Sci. , vol.4 , pp. 1-136
  • 38
    • 54749116835 scopus 로고
    • Geometric and algebraic mechanisms of the integrability of Hamiltonian systems on homogeneous spaces and Lie algebras
    • VINITI, Moscow
    • V.V. Trofimov, A.T. Fomenko, Geometric and algebraic mechanisms of the integrability of Hamiltonian systems on homogeneous spaces and Lie algebras, Itogi Nauki. Fundamentalnye Napravleniya 16 (1987) VINITI, Moscow; English transl.: Encyclopedia of Math. Sci. 16 (1994) 261-333.
    • (1987) Itogi Nauki. Fundamentalnye Napravleniya , vol.16
    • Trofimov, V.V.1    Fomenko, A.T.2
  • 39
    • 11544267743 scopus 로고
    • V.V. Trofimov, A.T. Fomenko, Geometric and algebraic mechanisms of the integrability of Hamiltonian systems on homogeneous spaces and Lie algebras, Itogi Nauki. Fundamentalnye Napravleniya 16 (1987) VINITI, Moscow; English transl.: Encyclopedia of Math. Sci. 16 (1994) 261-333.
    • (1994) Encyclopedia of Math. Sci. , vol.16 , pp. 261-333
  • 40
    • 11544355474 scopus 로고
    • Academia Nazionale dei Lincei and the Scuola Normale Superiore, Press Syndicate of the University of Cambridge, Cambridge
    • S.P. Novikov, Solitons and Geometry, Academia Nazionale dei Lincei and the Scuola Normale Superiore, Press Syndicate of the University of Cambridge, Cambridge, 1994.
    • (1994) Solitons and Geometry
    • Novikov, S.P.1
  • 42
    • 11544353103 scopus 로고
    • V.I. Arnold, S.P. Novikov, Itogi Nauki. Fundamentalnye Napravleniya 16 (1987), VINITI, Moscow; English transl.: Encyclopedia of Math. Sci. 16 (1994).
    • (1994) Encyclopedia of Math. Sci. , vol.16


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.