메뉴 건너뛰기




Volumn 156, Issue 1, 1998, Pages 75-120

Some General Forms of Sharp Sobolev Inequalities

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0003078627     PISSN: 00221236     EISSN: None     Source Type: Journal    
DOI: 10.1006/jfan.1998.3245     Document Type: Article
Times cited : (8)

References (22)
  • 1
    • 0003796630 scopus 로고
    • San Diego: Academic Press
    • Adams R. Sobolev Spaces. 1975;Academic Press, San Diego.
    • (1975) Sobolev Spaces
    • Adams, R.1
  • 3
    • 0001676787 scopus 로고
    • Espaces de Sobolev sur les variétés Riemanniennes
    • Aubin T. Espaces de Sobolev sur les variétés Riemanniennes. Bull. Sci. Math. 100:1976;149-173.
    • (1976) Bull. Sci. Math. , vol.100 , pp. 149-173
    • Aubin, T.1
  • 4
    • 0000759151 scopus 로고
    • Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality
    • Beckner W. Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. 138:1993;213-242.
    • (1993) Ann. Math. , vol.138 , pp. 213-242
    • Beckner, W.1
  • 5
    • 0002405776 scopus 로고
    • Sobolev inequalities with remainder terms
    • Brezis H., Lieb E. Sobolev inequalities with remainder terms. J. Funct. Anal. 62:1985;73-86.
    • (1985) J. Funct. Anal. , vol.62 , pp. 73-86
    • Brezis, H.1    Lieb, E.2
  • 6
    • 84990613834 scopus 로고
    • Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
    • Brezis H., Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36:1983;437-477.
    • (1983) Comm. Pure Appl. Math. , vol.36 , pp. 437-477
    • Brezis, H.1    Nirenberg, L.2
  • 7
    • 84990617031 scopus 로고
    • Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth
    • Caffarelli L., Gidas B., Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42:1989;271-297.
    • (1989) Comm. Pure Appl. Math. , vol.42 , pp. 271-297
    • Caffarelli, L.1    Gidas, B.2    Spruck, J.3
  • 9
    • 0013485911 scopus 로고
    • On the minimization of symmetric functionals
    • Carlen E., Loss M. On the minimization of symmetric functionals. Rev. Math. Phys. 1994;1011-1032.
    • (1994) Rev. Math. Phys. , pp. 1011-1032
    • Carlen, E.1    Loss, M.2
  • 10
    • 0001231329 scopus 로고
    • Problèmes de Neumann nonlinéaires sur les variétés Riemanniennes
    • Cherrier P. Problèmes de Neumann nonlinéaires sur les variétés Riemanniennes. J. Funct. Anal. 57:1984;154-207.
    • (1984) J. Funct. Anal. , vol.57 , pp. 154-207
    • Cherrier, P.1
  • 11
    • 84990613846 scopus 로고
    • Uniqueness theorems on conformal deformation of metric, Sobolev inequalities, and an eigenvalue estimate
    • Escobar J. Uniqueness theorems on conformal deformation of metric, Sobolev inequalities, and an eigenvalue estimate. Comm. Pure Appl. Math. 43:1990;857-883.
    • (1990) Comm. Pure Appl. Math. , vol.43 , pp. 857-883
    • Escobar, J.1
  • 12
    • 0001256961 scopus 로고
    • Sharp constant in a Sobolev trace inequality
    • Escobar J. Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37:1988;687-698.
    • (1988) Indiana Univ. Math. J. , vol.37 , pp. 687-698
    • Escobar, J.1
  • 13
    • 0001619214 scopus 로고    scopus 로고
    • Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci curvature bounded below and positive injectivity radius
    • Hebey E. Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci curvature bounded below and positive injectivity radius. Amer. J. Math. 118:1996;291-300.
    • (1996) Amer. J. Math. , vol.118 , pp. 291-300
    • Hebey, E.1
  • 14
  • 15
    • 84974004186 scopus 로고
    • The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds
    • Hebey E., Vaugon M. The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds. Duke Math. J. 79:1995;235-279.
    • (1995) Duke Math. J. , vol.79 , pp. 235-279
    • Hebey, E.1    Vaugon, M.2
  • 16
    • 84974004811 scopus 로고
    • Uniqueness theorems through the method of moving spheres
    • Li Y. Y., Zhu M. Uniqueness theorems through the method of moving spheres. Duke Math. J. 80:1995;383-417.
    • (1995) Duke Math. J. , vol.80 , pp. 383-417
    • Li, Y.Y.1    Zhu, M.2
  • 17
    • 0039500609 scopus 로고    scopus 로고
    • Sharp Sobolev trace inequality on Riemannian manifolds with boundary
    • Li Y. Y., Zhu M. Sharp Sobolev trace inequality on Riemannian manifolds with boundary. Comm. Pure Appl. Math. 50:1997;449-487.
    • (1997) Comm. Pure Appl. Math. , vol.50 , pp. 449-487
    • Li, Y.Y.1    Zhu, M.2
  • 18
    • 0032221698 scopus 로고    scopus 로고
    • Sharp Sobolev inequalities involving boundary terms
    • Li Y. Y., Zhu M. Sharp Sobolev inequalities involving boundary terms. Geom. Funct. Anal. (GAFA). 8:1998;59-87.
    • (1998) Geom. Funct. Anal. (GAFA) , vol.8 , pp. 59-87
    • Li, Y.Y.1    Zhu, M.2
  • 19
    • 0000298073 scopus 로고
    • Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities
    • Lieb E. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math. 118:1983;349-374.
    • (1983) Ann. of Math. , vol.118 , pp. 349-374
    • Lieb, E.1
  • 20
    • 0001294182 scopus 로고
    • The concentrations-compactness principle in the calculus of variations, I, II
    • Lions P. The concentrations-compactness principle in the calculus of variations, I, II. Rev. Math. Iberoamericana. 1:1985;145-201.
    • (1985) Rev. Math. Iberoamericana , vol.1 , pp. 145-201
    • Lions, P.1
  • 21
    • 34250392866 scopus 로고
    • Best constant in Sobolev inequality
    • Talenti G. Best constant in Sobolev inequality. Ann. Mat. Pure Appl. 110:1976;353-372.
    • (1976) Ann. Mat. Pure Appl. , vol.110 , pp. 353-372
    • Talenti, G.1
  • 22
    • 0040104026 scopus 로고    scopus 로고
    • Rutgers University
    • M. Zhu, Rutgers University, 1996.
    • (1996)
    • Zhu, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.