메뉴 건너뛰기




Volumn 5, Issue , 2000, Pages 1-24

Limsup random fractals

Author keywords

Hausdorff dimension; Limsup random fractals; Packing dimension

Indexed keywords


EID: 0003028968     PISSN: None     EISSN: 10836489     Source Type: Journal    
DOI: 10.1214/EJP.v5-60     Document Type: Article
Times cited : (58)

References (25)
  • 1
    • 0000654049 scopus 로고
    • Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm
    • A. de Acosta (1983), Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm. Ann. Probab. 11, 78-101.
    • (1983) Ann. Probab. , vol.11 , pp. 78-101
    • De Acosta, A.1
  • 4
    • 84968478877 scopus 로고
    • First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path
    • Z. Ciesielski and S. J. Taylor (1962), First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103, 434-450.
    • (1962) Trans. Amer. Math. Soc. , vol.103 , pp. 434-450
    • Ciesielski, Z.1    Taylor, S.J.2
  • 5
    • 0003220576 scopus 로고
    • Random fractals generated by oscillations of processes with stationary and independent increments
    • Sandjberg, Progr. Probab., 35, Birkhauser Boston
    • P. Deheuvels and D. M. Mason (1994), Random fractals generated by oscillations of processes with stationary and independent increments. Probability in Banach spaces 9 (Sandjberg, 1993), 73-89, Progr. Probab., 35, Birkhauser Boston.
    • (1994) Probability in Banach Spaces 9 , pp. 73-89
    • Deheuvels, P.1    Mason, D.M.2
  • 6
    • 0002059563 scopus 로고    scopus 로고
    • Random fractal functional laws of the iterated logarithm
    • P. Deheuvels and D. M. Mason (1998), Random fractal functional laws of the iterated logarithm. Studia Sci. Math. Hungar. 34, 89-106.
    • (1998) Studia Sci. Math. Hungar. , vol.34 , pp. 89-106
    • Deheuvels, P.1    Mason, D.M.2
  • 7
    • 84888965126 scopus 로고    scopus 로고
    • Thick points for spatial Brownian motion: Multifractal analysis of occupation measure
    • to appear
    • A. Dembo, Y. Peres, J. Rosen and O. Zeitouni (1998), Thick points for spatial Brownian motion: multifractal analysis of occupation measure. Ann. Probab., to appear.
    • (1998) Ann. Probab
    • Dembo, A.1    Peres, Y.2    Rosen, J.3    Zeitouni, O.4
  • 8
    • 0003836048 scopus 로고    scopus 로고
    • Large Deviations: Techniques and Applications. S
    • Springer-Verlag, New York
    • A. Dembo and O. Zeitouni (1998), Large Deviations: Techniques and Applications. Second Edition. Applications of Mathematics, 38. Springer-Verlag, New York.
    • (1998) Econd Edition. Applications of Mathematics , pp. 38
    • Dembo, A.1    Zeitouni, O.2
  • 9
    • 0039637031 scopus 로고
    • On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set
    • J. Hawkes. (1971), On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set. Z. Wahr. verw. Geb., 19, 90-102
    • (1971) Z. Wahr. Verw. Geb. , vol.19 , pp. 90-102
    • Hawkes, J.1
  • 11
    • 84972048954 scopus 로고
    • On the existence of subsets of finite positive packing measure
    • H. Joyce and D. Preiss (1995), On the existence of subsets of finite positive packing measure. Mathematika 42, 15-24.
    • (1995) Mathematika , vol.42 , pp. 15-24
    • Joyce, H.1    Preiss, D.2
  • 13
    • 84972534343 scopus 로고
    • Large increments of Brownian motion
    • R. Kaufman (1975), Large increments of Brownian motion. Nagoya Math. J. 56, 139-145.
    • (1975) Nagoya Math. J. , vol.56 , pp. 139-145
    • Kaufman, R.1
  • 15
    • 0039386755 scopus 로고
    • La mesure de Hausdorff de la courbe du mouvement brownien
    • P. Levy (1953), La mesure de Hausdorff de la courbe du mouvement brownien. Giorn. 1st. Ital. Attuari 16, 1-37.
    • (1953) Giorn. 1St. Ital. Attuari , vol.16 , pp. 1-37
    • Levy, P.1
  • 16
    • 0039557797 scopus 로고
    • Holder conditions for Gaussian processes with stationary increments
    • M. B. Marcus (1968), Holder conditions for Gaussian processes with stationary increments. Trans. Amer. Math. Soc. 134, 29-52.
    • (1968) Trans. Amer. Math. Soc. , vol.134 , pp. 29-52
    • Marcus, M.B.1
  • 19
    • 0000622785 scopus 로고
    • Sample functions of the N-parameter Wiener process
    • S. Orey and W. E. Pruitt (1973), Sample functions of the N-parameter Wiener process. Ann. of Probab. 1, 138-163.
    • (1973) Ann. Of Probab. , vol.1 , pp. 138-163
    • Orey, S.1    Pruitt, W.E.2
  • 20
    • 0001400956 scopus 로고
    • How often on a Brownian path does the law of the iterated logarithm fail?
    • S. Orey and S. J. Taylor (1974), How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. 28, 174-192.
    • (1974) Proc. London Math. Soc. , vol.28 , pp. 174-192
    • Orey, S.1    Taylor, S.J.2
  • 21
    • 0030537118 scopus 로고    scopus 로고
    • Intersection-equivalence of Brownian paths and certain branching processes
    • Y. Peres (1996a). Intersection-equivalence of Brownian paths and certain branching processes. Commun. Math. Phys. 177, 417-434.
    • (1996) Commun. Math. Phys. , vol.177 , pp. 417-434
    • Peres, Y.1
  • 22
    • 0000069376 scopus 로고    scopus 로고
    • Remarks on intersection-equivalence and capacity-equivalence. Ann. Inst. Henri Poincaré
    • Y. Peres (1996b), Remarks on intersection-equivalence and capacity-equivalence. Ann. Inst. Henri Poincaré (Physique theorique) 64, 339-347.
    • (1996) (Physique Theorique) , vol.64 , pp. 339-347
    • Peres, Y.1
  • 23
    • 0000187772 scopus 로고
    • An invariance principle for the law of the iterated logarithm
    • V. Strassen (1964), An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3, 211-226.
    • (1964) Z. Wahrsch. Verw. Gebiete , vol.3 , pp. 211-226
    • Strassen, V.1
  • 24
    • 84974022175 scopus 로고
    • The measure theory of random fractals
    • S. J. Taylor (1986), The measure theory of random fractals. Math. Proc. Cambridge Phil. Soc. 100, 383-406.
    • (1986) Math. Proc. Cambridge Phil. Soc. , vol.100 , pp. 383-406
    • Taylor, S.J.1
  • 25
    • 0000659593 scopus 로고
    • An introduction to stochastic partial differential equations
    • Springer, Berlin-New York
    • J. B. Walsh (1986), An introduction to stochastic partial differential equations. Ecole d’ete de probabilites de Saint-Flour, XIV-1984, 265-439, Lecture Notes in Math. 1180, Springer, Berlin-New York.
    • (1986) Cole d’ete De Probabilites De Saint-Flour, XIV , vol.1180 , pp. 265-439
    • Walsh, J.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.