메뉴 건너뛰기




Volumn 19, Issue 1, 1999, Pages 57-79

Angle singularities of solutions to the Neumann problem for the two-dimensional Riccati's equation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0002851923     PISSN: 09217134     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (8)

References (4)
  • 1
    • 77956477684 scopus 로고    scopus 로고
    • Theory of a higher-order Sturm-Liouville equation
    • Springer
    • V.A. Kozlov and V.G. Maz'ya, Theory of a Higher-Order Sturm-Liouville Equation, Lecture Notes in Math., Vol. 1659, Springer, 1997.
    • (1997) Lecture Notes in Math. , vol.1659
    • Kozlov, V.A.1    Maz'ya, V.G.2
  • 2
    • 0040273891 scopus 로고    scopus 로고
    • Comparison principles for nonlinear operator differential equations in Banach spaces
    • Differential Operations and Spectral Theory (Birman's 70th Anniversary Collection), (to appear)
    • V.A. Kozlov and V.G. Maz'ya, Comparison principles for nonlinear operator differential equations in Banach spaces, in: Differential Operations and Spectral Theory (Birman's 70th Anniversary Collection), Amer. Math. Soc. Transl., Vol. 2 (to appear).
    • Amer. Math. Soc. Transl. , vol.2
    • Kozlov, V.A.1    Maz'ya, V.G.2
  • 3
    • 0003366106 scopus 로고    scopus 로고
    • Elliptic boundary value problems in domains with point singularities
    • American Mathematical Society
    • V.A. Kozlov, V.G. Maz'ya and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, Math. Surveys Monographs, Vol. 52, American Mathematical Society, 1997.
    • (1997) Math. Surveys Monographs , vol.52
    • Kozlov, V.A.1    Maz'ya, V.G.2    Rossmann, J.3
  • 4
    • 0040890340 scopus 로고
    • On conformal mapping of infinite strips
    • S.E. Warschawski, On conformal mapping of infinite strips, Trans. Amer. Math. Soc. 51 (1942), 280-335.
    • (1942) Trans. Amer. Math. Soc. , vol.51 , pp. 280-335
    • Warschawski, S.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.