메뉴 건너뛰기




Volumn 54, Issue 1, 2000, Pages 99-138

The magid-ryan conjecture for equiaffine hyperspheres with constant sectional curvature

Author keywords

Affine differential geometry; Affine hyperspheres; Constant sectional curvature

Indexed keywords


EID: 0002639555     PISSN: 0022040X     EISSN: 1945743X     Source Type: Journal    
DOI: 10.4310/jdg/1214342148     Document Type: Article
Times cited : (37)

References (14)
  • 1
    • 0039179710 scopus 로고    scopus 로고
    • The magid-ryan conjecture for 4-dimensional affine spheres
    • Univ. Hamburg
    • E. Bergen, E. Ramakers & L. Vrancken, The magid-ryan conjecture for 4-dimensional affine spheres, Abh. Math. Sem. Univ. Hamburg 69 (1999) 139-157.
    • (1999) Abh. Math. Sem , vol.69 , pp. 139-157
    • Bergen, E.1    Ramakers, E.2    Vrancken, L.3
  • 3
    • 0040891691 scopus 로고
    • On the Pick invariant, the affine mean curvature and the Gauss curvature of affine surfaces
    • F. Dillen, A. Martinez, F. Milan, F.G. Santos & L. Vrancken, On the Pick invariant, the affine mean curvature and the Gauss curvature of affine surfaces, Results Math. 20 (1991) 622-642.
    • (1991) Results Math , vol.20 , pp. 622-642
    • Dillen, F.1    Martinez, A.2    Milan, F.3    Santos, F.G.4    Vrancken, L.5
  • 4
    • 0040604732 scopus 로고
    • Calabi type composition of affine spheres
    • [41 F. Dillen & L. Vrancken, Calabi type composition of affine spheres, Differential Geom. Appl. 4 (1994) 303-328.
    • (1994) Differential Geom. Appl , vol.4 , pp. 303-328
    • Dillen, F.1    Vrancken, L.2
  • 5
    • 0040891696 scopus 로고
    • A proof of newton’s power sum formulas
    • J. A. Eidswick, A proof of newton’s power sum formulas, Amer. Math. Monthly 75 (1968) 396-397.
    • (1968) Amer. Math. Monthly , vol.75 , pp. 396-397
    • Eidswick, J.A.1
  • 6
    • 84966204168 scopus 로고
    • Totally real minimal immersions of n-dimensional real space forms into n-dimensional complex space forms
    • N. Ejiri, Totally real minimal immersions of n-dimensional real space forms into n-dimensional complex space forms, Proc. Amer. Math. Soc. 84 (1982) 243-246.
    • (1982) Proc. Amer. Math. Soc , vol.84 , pp. 243-246
    • Ejiri, N.1
  • 7
    • 23044519458 scopus 로고    scopus 로고
    • Lorentzian affine hyperspheres with constant sectional curvature
    • M. Kriele & L. Vrancken, Lorentzian affine hyperspheres with constant sectional curvature, Trans. Amer. Math. Soc. 352 (2000) 1581-1599.
    • (2000) Trans. Amer. Math. Soc , vol.352 , pp. 1581-1599
    • Kriele, M.1    Vrancken, L.2
  • 8
    • 51249176905 scopus 로고
    • Affine spheres with constant affine sectional curvature
    • A. M. Li, L. Vrancken & U. Simon, Affine spheres with constant affine sectional curvature, Math. Z. 206 (1991) 651-658.
    • (1991) Math. Z , vol.206 , pp. 651-658
    • Li, A.M.1    Vrancken, L.2    Simon, U.3
  • 10
    • 0041144148 scopus 로고
    • Affine 3-spheres with constant affine curvature
    • M. Magid & P. Ryan, Affine 3-spheres with constant affine curvature, Trans. Amer. Math. Soc. 330 (1992) 887-901.
    • (1992) Trans. Amer. Math. Soc , vol.330 , pp. 887-901
    • Magid, M.1    Ryan, P.2
  • 13
    • 0039364770 scopus 로고
    • Local classification of twodimensional affine spheres with constant curvature metric
    • U. Simon, Local classification of twodimensional affine spheres with constant curvature metric, Differential Geom. Appl. 1 (1991) 123-132.
    • (1991) Differential Geom. Appl , vol.1 , pp. 123-132
    • Simon, U.1
  • 14
    • 0040011598 scopus 로고
    • Affine quasi umbilical hypersurfaces which a, re flat with respect to the affine metric
    • L. Vrancken, Affine quasi umbilical hypersurfaces which a, re flat with respect to the affine metric, Results Math. 20 (1991) 756-776.
    • (1991) Results Math , vol.20 , pp. 756-776
    • Vrancken, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.