-
1
-
-
37049069547
-
-
I. Steels, P. J. De Clercq and H. Maskill, J. Chem. Soc., Chem. Commun., 1993, 294.
-
(1993)
J. Chem. Soc., Chem. Commun.
, pp. 294
-
-
Steels, I.1
De Clercq, P.J.2
Maskill, H.3
-
3
-
-
0001034164
-
-
(b) D. G. Oakenfull, K. Salvesen and W. P. Jencks, J. Am. Chem. Soc., 1971, 93, 188;
-
(1971)
J. Am. Chem. Soc.
, vol.93
, pp. 188
-
-
Oakenfull, D.G.1
Salvesen, K.2
Jencks, W.P.3
-
4
-
-
0001743923
-
-
For examples of esterification of amino alcohols with Aclm, see
-
(c) T. H. Fife, Acc. Chem. Res., 1993, 26, 325; For examples of esterification of amino alcohols with Aclm, see:
-
(1993)
Acc. Chem. Res.
, vol.26
, pp. 325
-
-
Fife, T.H.1
-
11
-
-
0017106240
-
-
S. J. Danishefsky, T. Kitahara, R. McKee and P. F. Schuda, J. Am. Chem. Soc., 1976, 98, 6715.
-
(1976)
J. Am. Chem. Soc.
, vol.98
, pp. 6715
-
-
Danishefsky, S.J.1
Kitahara, T.2
McKee, R.3
Schuda, P.F.4
-
12
-
-
77956770660
-
-
-3, respectively, at 25°C. These are within the normal range for catalysis by intramolecular proton transfer reported by A. J. Kirby, Adv. Phys. Org. Chem., 17, 1980, 183.
-
(1980)
Adv. Phys. Org. Chem.
, vol.17
, pp. 183
-
-
Kirby, A.J.1
-
14
-
-
0348127321
-
-
see ref. 3a
-
(b) see ref. 3a;
-
-
-
-
16
-
-
46549101323
-
-
D. D. Sternbach, D. M. Rossana and K. D. Onan, Tetrahedron Lett., 1985, 26, 591.
-
(1985)
Tetrahedron Lett.
, vol.26
, pp. 591
-
-
Sternbach, D.D.1
Rossana, D.M.2
Onan, K.D.3
-
17
-
-
33748939157
-
-
(a) R. M. Beesley, C. K. Ingold and J. F. Thorpe, J. Chem. Soc., 1915, 107, 1080;
-
(1915)
J. Chem. Soc.
, vol.107
, pp. 1080
-
-
Beesley, R.M.1
Ingold, C.K.2
Thorpe, J.F.3
-
19
-
-
0342828055
-
-
(c) C. K. Ingold, E. W. Lanfear and J. F. Thorpe, ibid., 1923, 123, 3140.
-
(1923)
J. Chem. Soc.
, vol.123
, pp. 3140
-
-
Ingold, C.K.1
Lanfear, E.W.2
Thorpe, J.F.3
-
21
-
-
0348127320
-
-
see ref. 7a
-
(b) see ref. 7a.
-
-
-
-
22
-
-
0001567673
-
-
(a) J. Jager, T. Graafland, H. Schenk, A. J. Kirby and J. Engberts, J. Am. Chem. Soc., 1984, 106, 139;
-
(1984)
J. Am. Chem. Soc.
, vol.106
, pp. 139
-
-
Jager, J.1
Graafland, T.2
Schenk, H.3
Kirby, A.J.4
Engberts, J.5
-
26
-
-
0348127318
-
-
Department of Chemistry, Columbia University, New York, USA
-
(a) Calculations were carried out using MacroModel V3.0: W. C. Still, F. Mohamadi, N. G. J. Richards, W. C. Guida, M. Lipton, R. Liskamp, G. Chang, T. Hendrickson, F. DeGunst and W. Hasel, Department of Chemistry, Columbia University, New York, USA;
-
Calculations Were Carried out Using MacroModel V3.0
-
-
Still, W.C.1
Mohamadi, F.2
Richards, N.G.J.3
Guida, W.C.4
Lipton, M.5
Liskamp, R.6
Chang, G.7
Hendrickson, T.8
Degunst, F.9
Hasel, W.10
-
28
-
-
0346866824
-
-
note
-
The intramolecular GAC pathway from the zwitterionic tetrahedral intermediate formed from acetylimidazole (which was ruled out by the calculation of strain involved in the proton transfer to N-3 of the imidazole residue) should be much easier for the zwitterionic tetrahedral intermediate formed from acetylpyrazole as this involves intramolecular proton transfer to the more accessible N-2 of the pyrazole residue via a less strained transition structure. Furthermore, since pyrazole is a much weaker base than imidazole, it should be a better nucleofuge, so acetylpyrazole will be more reactive in these reactions if the second step is rate limiting. We have shown, however, that acetylpyrazole is actually less reactive than acetylimidazole with various amino alcohols. We take this as further evidence that the initial intramolecular GBC nucleophilic attack of the amino alcohol is rate limiting.
-
-
-
-
30
-
-
0346866823
-
-
unpublished results
-
A. Madder, unpublished results.
-
-
-
Madder, A.1
|