-
2
-
-
0002650276
-
An exponential estimate of the time of stability of nearly integrable Hamiltonian systems
-
N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Usp. Mat. Nauk 32:6, 5-66 (1977) [Russ. Math. Surv. 32:6, 1-65 (1977)].
-
(1977)
Usp. Mat. Nauk
, vol.32
, Issue.6
, pp. 5-66
-
-
Nekhoroshev, N.N.1
-
3
-
-
0039173727
-
-
N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Usp. Mat. Nauk 32:6, 5-66 (1977) [Russ. Math. Surv. 32:6, 1-65 (1977)].
-
(1977)
Russ. Math. Surv.
, vol.32
, Issue.6
, pp. 1-65
-
-
-
5
-
-
0001230249
-
Bifurcation of liquid drops
-
D. Lewis, Bifurcation of liquid drops. Nonlinearity 6, 491-522 (1993).
-
(1993)
Nonlinearity
, vol.6
, pp. 491-522
-
-
Lewis, D.1
-
8
-
-
0009101129
-
Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point
-
A. Giorgilli, Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point. Ann. Inst. Henri Poincaré - Physique Thèorique 48, 423-439 (1988)
-
(1988)
Ann. Inst. Henri Poincaré - Physique Thèorique
, vol.48
, pp. 423-439
-
-
Giorgilli, A.1
-
9
-
-
0000163515
-
Effective Stability for a Hamiltonian System near an Elliptic Equilibrium Point, with an Application to the Restricted three Body Problem
-
A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective Stability for a Hamiltonian System near an Elliptic Equilibrium Point, with an Application to the Restricted three Body Problem. J. Diff. Eq. 77, 167-198 (1989).
-
(1989)
J. Diff. Eq.
, vol.77
, pp. 167-198
-
-
Giorgilli, A.1
Delshams, A.2
Fontich, E.3
Galgani, L.4
Simó, C.5
-
11
-
-
82255190560
-
Canonical perturbation theory via simultaneous approximation
-
P. Lochak, Canonical perturbation theory via simultaneous approximation. Russ. Math. Surv. 47, 57-133 (1992)
-
(1992)
Russ. Math. Surv.
, vol.47
, pp. 57-133
-
-
Lochak, P.1
-
12
-
-
0013251091
-
Stability of Hamiltonian systems over exponentially long times: The near linear case
-
H. Dumas, K. Meyer, D. Schmidt (eds), Hamiltonian Dynamical Systems - History, Theory, and Applications, Springer, New York
-
P. Lochak, Stability of Hamiltonian systems over exponentially long times: the near linear case. In H. Dumas, K. Meyer, D. Schmidt (eds), Hamiltonian Dynamical Systems - History, Theory, and Applications, The IMA Volumes in Mathematics and its Applications 63, 221-229 (Springer, New York, 1995).
-
(1995)
The IMA Volumes in Mathematics and Its Applications
, vol.63
, pp. 221-229
-
-
Lochak, P.1
-
13
-
-
0000644189
-
Fast rotations of the rigid body: A study by Hamiltonian perturbation theory. Part II: Gyroscopic rotations
-
To appear
-
G. Benettin, F. Fassò and M. Guzzo, Fast rotations of the rigid body: A study by Hamiltonian perturbation theory. Part II: Gyroscopic rotations. To appear in Nonlinearity
-
Nonlinearity
-
-
Benettin, G.1
Fassò, F.2
Guzzo, M.3
-
14
-
-
0001182022
-
Lie series method for vector fields and Hamiltonian perturbation theory
-
F. Fassò, Lie series method for vector fields and Hamiltonian perturbation theory. J. Appl. Math. Phys. (ZAMP) 41, 843-864 (1990).
-
(1990)
J. Appl. Math. Phys. (ZAMP)
, vol.41
, pp. 843-864
-
-
Fassò, F.1
-
15
-
-
0001193375
-
Nekhoroshev estimates for quasi-convex Hamiltonian Systems
-
J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian Systems, Math. Z. 213, 187-216 (1993).
-
(1993)
Math. Z.
, vol.213
, pp. 187-216
-
-
Pöschel, J.1
-
16
-
-
0039117989
-
Fast rotations of the rigid body: A study by Hamiltonian perturbation theory. Part I
-
G. Benettin and F. Fassò, Fast rotations of the rigid body: A study by Hamiltonian perturbation theory. Part I. Nonlinearity 9, 137-186 (1996).
-
(1996)
Nonlinearity
, vol.9
, pp. 137-186
-
-
Benettin, G.1
Fassò, F.2
|