-
3
-
-
0004116528
-
-
Springer, Berlin
-
A. Lasota and M. Mackey, Chaos, Fractals, and Noise, 2nd edn. Springer, Berlin (1994).
-
(1994)
Chaos, Fractals, and Noise, 2nd Edn.
-
-
Lasota, A.1
Mackey, M.2
-
4
-
-
84990727688
-
Generalized spectral decomposition of mixing dynamical systems
-
I. Antoniou and S. Tasaki, Generalized spectral decomposition of mixing dynamical systems. Int. J. Quant. Chem. 46, 425-474 (1993).
-
(1993)
Int. J. Quant. Chem.
, vol.46
, pp. 425-474
-
-
Antoniou, I.1
Tasaki, S.2
-
6
-
-
17844380546
-
Spectral decomposition of the Renyi map
-
I. Antoniou and S. Tasaki, Spectral decomposition of the Renyi map. J. Phys. A 26, 73-94 (1993).
-
(1993)
J. Phys. A
, vol.26
, pp. 73-94
-
-
Antoniou, I.1
Tasaki, S.2
-
7
-
-
44049120431
-
Generalized spectral decomposition of the β-adic Baker's transformation and intrinsic irreversibility
-
I. Antoniou and S. Tasaki, Generalized spectral decomposition of the β-adic Baker's transformation and intrinsic irreversibility. Physica A 190, 303-329 (1992).
-
(1992)
Physica A
, vol.190
, pp. 303-329
-
-
Antoniou, I.1
Tasaki, S.2
-
12
-
-
17044374336
-
On the rate of mixing of Axiom A flow
-
M. Pollicott, On the rate of mixing of Axiom A flow. Invent. Math. 81, 413-426 (1985); Meromorphic extensions of generalized zeta functions. Ibid. 85, 147-164.
-
(1985)
Invent. Math.
, vol.81
, pp. 413-426
-
-
Pollicott, M.1
-
13
-
-
33646978879
-
Meromorphic extensions of generalized zeta functions
-
M. Pollicott, On the rate of mixing of Axiom A flow. Invent. Math. 81, 413-426 (1985); Meromorphic extensions of generalized zeta functions. Ibid. 85, 147-164.
-
Invent. Math.
, vol.85
, pp. 147-164
-
-
-
14
-
-
0001337517
-
Resonances of chaotic dynamical systems
-
D. Ruelle, Resonances of chaotic dynamical systems. Phys. Rev. Lett. 56, 405-407 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.56
, pp. 405-407
-
-
Ruelle, D.1
-
16
-
-
51649157555
-
An extension of the theory of Fredholm determinants
-
D. Ruelle, An extension of the theory of Fredholm determinants, Publ Math. IHES 72, 175-193 (1990).
-
(1990)
Publ Math. IHES
, vol.72
, pp. 175-193
-
-
Ruelle, D.1
-
17
-
-
0001741383
-
Time correlation functions of one dimensional transformations
-
H. Mori, B. So and T. Ose, Time correlation functions of one dimensional transformations. Prog. Theor. Phys. 66, 1266-1283 (1981).
-
(1981)
Prog. Theor. Phys.
, vol.66
, pp. 1266-1283
-
-
Mori, H.1
So, B.2
Ose, T.3
-
18
-
-
0002161851
-
Spectrum and eigenfunctions of the Frobenius-Perron operator of the tent map
-
M. Dörfle, Spectrum and eigenfunctions of the Frobenius-Perron operator of the tent map. J. Stat. Phys. 40, 93-103 (1985).
-
(1985)
J. Stat. Phys.
, vol.40
, pp. 93-103
-
-
Dörfle, M.1
-
20
-
-
0346779701
-
r-adic one dimensional maps and the Euler summation formula
-
P. Gaspard, r-adic one dimensional maps and the Euler summation formula. J. Phys. A 25, L483-485 (1992); Diffusion in uniformly hyperbolic one-dimensional maps and Appel polynomials. Phys. Lett. A 168, 13-17 (1992).
-
(1992)
J. Phys. A
, vol.25
-
-
Gaspard, P.1
-
21
-
-
0041336891
-
Diffusion in uniformly hyperbolic one-dimensional maps and Appel polynomials
-
P. Gaspard, r-adic one dimensional maps and the Euler summation formula. J. Phys. A 25, L483-485 (1992); Diffusion in uniformly hyperbolic one-dimensional maps and Appel polynomials. Phys. Lett. A 168, 13-17 (1992).
-
(1992)
Phys. Lett. A
, vol.168
, pp. 13-17
-
-
-
22
-
-
0039892092
-
Transport as a dynamical property of a simple map
-
H. H. Hasegawa and D. Driebe, Transport as a dynamical property of a simple map. Phys. Lett. A 168, 18-24 (1992); Spectral determination and physical conditions for a class of chaotic piecewise-linear maps. Ibid. 176, 193-201 (1993).
-
(1992)
Phys. Lett. A
, vol.168
, pp. 18-24
-
-
Hasegawa, H.H.1
Driebe, D.2
-
23
-
-
0039210307
-
Spectral determination and physical conditions for a class of chaotic piecewise-linear maps
-
H. H. Hasegawa and D. Driebe, Transport as a dynamical property of a simple map. Phys. Lett. A 168, 18-24 (1992); Spectral determination and physical conditions for a class of chaotic piecewise-linear maps. Ibid. 176, 193-201 (1993).
-
(1993)
Phys. Lett. A
, vol.176
, pp. 193-201
-
-
-
24
-
-
0001853880
-
Deterministic diffusion, De Rham equation and fractal eigenvectors
-
S. Tasaki, Z. Suchanecki and I. Antoniou, Deterministic diffusion, De Rham equation and fractal eigenvectors. Phys. Lett. A 179, 97-102 (1993); Ergodic properties of piecewise linear maps on fractal repellers. Ibid. 103-110; Spectral decomposition and fractal eigenvectors for a class of piecewise linear maps. Chaos, Solitons & Fractals 4, 227-254 (1994).
-
(1993)
Phys. Lett. A
, vol.179
, pp. 97-102
-
-
Tasaki, S.1
Suchanecki, Z.2
Antoniou, I.3
-
25
-
-
0001712429
-
Ergodic properties of piecewise linear maps on fractal repellers
-
S. Tasaki, Z. Suchanecki and I. Antoniou, Deterministic diffusion, De Rham equation and fractal eigenvectors. Phys. Lett. A 179, 97-102 (1993); Ergodic properties of piecewise linear maps on fractal repellers. Ibid. 103-110; Spectral decomposition and fractal eigenvectors for a class of piecewise linear maps. Chaos, Solitons & Fractals 4, 227-254 (1994).
-
Phys. Lett. A
, pp. 103-110
-
-
-
26
-
-
0028378242
-
Spectral decomposition and fractal eigenvectors for a class of piecewise linear maps
-
S. Tasaki, Z. Suchanecki and I. Antoniou, Deterministic diffusion, De Rham equation and fractal eigenvectors. Phys. Lett. A 179, 97-102 (1993); Ergodic properties of piecewise linear maps on fractal repellers. Ibid. 103-110; Spectral decomposition and fractal eigenvectors for a class of piecewise linear maps. Chaos, Solitons & Fractals 4, 227-254 (1994).
-
(1994)
Chaos, Solitons & Fractals
, vol.4
, pp. 227-254
-
-
-
27
-
-
24844433149
-
Generalized Markov coarse graining and spectral decompositions of chaotic piecewise linear maps
-
D. Mackernan and G. Nicolis, Generalized Markov coarse graining and spectral decompositions of chaotic piecewise linear maps. Phys. Rev. E 50, 988-999 (1994).
-
(1994)
Phys. Rev. E
, vol.50
, pp. 988-999
-
-
Mackernan, D.1
Nicolis, G.2
-
28
-
-
0000910627
-
Spectral decomposition of the tent maps and the isomorphism of dynamical systems
-
I. Antoniou and Bi Qiao, Spectral decomposition of the tent maps and the isomorphism of dynamical systems. Phys. Lett. A 215, 280-290 (1996).
-
(1996)
Phys. Lett. A
, vol.215
, pp. 280-290
-
-
Antoniou, I.1
Qiao, B.2
-
29
-
-
13544256739
-
Jordan blocks in a one-dimensional Markov map
-
in press
-
D. Driebe, Jordan blocks in a one-dimensional Markov map. Comput. Math. Appl. (in press); D. Driebe and G. Ordouez, Using symmetries of the Frobenius-Perron operator to determine spectral decompositions. Phys. Lett. A 211, 204-210 (1996).
-
Comput. Math. Appl.
-
-
Driebe, D.1
-
30
-
-
13544256739
-
Using symmetries of the Frobenius-Perron operator to determine spectral decompositions
-
D. Driebe, Jordan blocks in a one-dimensional Markov map. Comput. Math. Appl. (in press); D. Driebe and G. Ordouez, Using symmetries of the Frobenius-Perron operator to determine spectral decompositions. Phys. Lett. A 211, 204-210 (1996).
-
(1996)
Phys. Lett. A
, vol.211
, pp. 204-210
-
-
Driebe, D.1
Ordouez, G.2
-
31
-
-
85033121054
-
Resonances of dynamical systems and Fredholm-Riesz operators in rigged Hubert spaces
-
in press
-
O. Bandtlow, I. Antoniou and Z. Suchanecki, Resonances of dynamical systems and Fredholm-Riesz operators in rigged Hubert spaces. Comput. Math. Appl. (in press).
-
Comput. Math. Appl.
-
-
Bandtlow, O.1
Antoniou, I.2
Suchanecki, Z.3
-
35
-
-
0041655917
-
-
edited by C. Horton, L. Reichl, A. Szebehely. Wiley, New York
-
B. Misra and I. Prigogine, Time, Probability and Dynamics in Long Time Predictions in Dynamics, edited by C. Horton, L. Reichl, A. Szebehely. Wiley, New York (1983).
-
(1983)
Time, Probability and Dynamics in Long Time Predictions in Dynamics
-
-
Misra, B.1
Prigogine, I.2
-
36
-
-
0000917444
-
Intrinsic irreversibility and integrability of dynamics
-
I. Antoniou and I. Prigogine, Intrinsic irreversibility and integrability of dynamics. Physica A 192, 443-464 (1993).
-
(1993)
Physica A
, vol.192
, pp. 443-464
-
-
Antoniou, I.1
Prigogine, I.2
|