메뉴 건너뛰기




Volumn 5, Issue 1, 1999, Pages 21-30

Fusion methods in multiple sensor systems using feedforward sigmoid neural networks

Author keywords

Empirical estimation; Feedforward; Fusion rule estimation; Lipschitz functions; Neural networks; Sensor fusion

Indexed keywords


EID: 0002389879     PISSN: 10798587     EISSN: 2326005X     Source Type: Journal    
DOI: 10.1080/10798587.1999.10750748     Document Type: Article
Times cited : (11)

References (21)
  • 2
    • 0004302610 scopus 로고
    • John Wiley and Sons, New York, second edition
    • P. Billingsley, "Probability and Measure", John Wiley and Sons, New York, second edition, 1986.
    • (1986) Probability and Measure
    • Billingsley, P.1
  • 4
    • 0010458830 scopus 로고
    • Statistical independence and threshold functions
    • C.K. Chow, "Statistical independence and threshold functions", IEEE Trans. Electronic Computers, EC-16:66-68, 1965.
    • (1965) IEEE Trans. Electronic Computers , vol.EC-16 , pp. 66-68
    • Chow, C.K.1
  • 5
    • 0004197578 scopus 로고
    • IEEE Computer Society Press, Los Alamitos, California
    • B.V. Dasarathy, "Decision Fusion", IEEE Computer Society Press, Los Alamitos, California, 1994.
    • (1994) Decision Fusion
    • Dasarathy, B.V.1
  • 7
    • 0026627415 scopus 로고
    • Kolmogorov's theorem and multilayer neural networks
    • V. Kurkova, "Kolmogorov's theorem and multilayer neural networks", Neural Networks, 5:501-506, 1992.
    • (1992) Neural Networks , vol.5 , pp. 501-506
    • Kurkova, V.1
  • 8
    • 0029307575 scopus 로고
    • Nonparametric estimation via empirical risk minimization
    • G. Lugosi and K. Zeger, "Nonparametric estimation via empirical risk minimization", IEEE Transactions on Information Theory, 41(3):677-687, 1995.
    • (1995) IEEE Transactions on Information Theory , vol.41 , Issue.3 , pp. 677-687
    • Lugosi, G.1    Zeger, K.2
  • 10
    • 0000518496 scopus 로고
    • Fusion methods for multiple sensor systems with unknown error densities
    • N.S.V. Rao, "Fusion methods for multiple sensor systems with unknown error densities", Journal of Franklin Institute, 331B(5):509-530, 1994.
    • (1994) Journal of Franklin Institute , vol.331B , Issue.5 , pp. 509-530
    • Rao, N.S.V.1
  • 12
    • 0001436574 scopus 로고    scopus 로고
    • Nadaraya-Watson estimator for sensor fusion
    • N.S.V. Rao, "Nadaraya-Watson estimator for sensor fusion", Optical Engineering, 36(3):642-647, 1997.
    • (1997) Optical Engineering , vol.36 , Issue.3 , pp. 642-647
    • Rao, N.S.V.1
  • 14
    • 0010421062 scopus 로고    scopus 로고
    • Vector space methods for sensor fusion problems
    • press
    • N.S.V. Rao, "Vector space methods for sensor fusion problems", Optical Engineering, 37(2):499-504, in press, 1998.
    • (1998) Optical Engineering , vol.37 , Issue.2 , pp. 499-504
    • Rao, N.S.V.1
  • 15
    • 0001712215 scopus 로고    scopus 로고
    • Distributed decision fusion under unknown distributions
    • N.S.V. Rao and S. S. Iyengar, "Distributed decision fusion under unknown distributions", Optical Engineering, 35(3):617-624, 1996.
    • (1996) Optical Engineering , vol.35 , Issue.3 , pp. 617-624
    • Rao, N.S.V.1    Iyengar, S.S.2
  • 16
    • 0032095771 scopus 로고    scopus 로고
    • Function estimation by feedforward sigmoidal networks with bounded weights
    • N.S.V. Rao and V. Protopopescu, "Function estimation by feedforward sigmoidal networks with bounded weights", Neural Processing Letters, 7(3): 125-131, 1997.
    • (1997) Neural Processing Letters , vol.7 , Issue.3 , pp. 125-131
    • Rao, N.S.V.1    Protopopescu, V.2
  • 17
    • 0003143512 scopus 로고
    • Proceedings of Workshop on Foundations of Information/Decision Fusion With Applications to Engineering Problems, University of Southwestern Louisiana, 1996. IB. S. Saarinen, R.B. Bramley, and G. Cybenko, "Neural networks, backpropagation and automatic differentiation"
    • A. Griewank and G. F. Corliss, editors,, SIAM, Philadelphia, PA
    • N.S.V. Rao, V. Protopopescu, J. Barhen, and G. Seetharaman, editors, Proceedings of Workshop on Foundations of Information/Decision Fusion With Applications to Engineering Problems, University of Southwestern Louisiana, 1996. IB. S. Saarinen, R.B. Bramley, and G. Cybenko, "Neural networks, backpropagation and automatic differentiation", In A. Griewank and G. F. Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and Application, pages 31-42. SIAM, Philadelphia, PA, 1991.
    • (1991) Automatic Differentiation of Algorithms: Theory, Implementation, and Application , pp. 31-42
    • Rao, N.S.V.1    Protopopescu, V.2    Barhen, J.3    Seetharaman, G.4
  • 18
    • 0030220483 scopus 로고    scopus 로고
    • Back-propagation is not efficient
    • J. Sima, "Back-propagation is not efficient", Neural Networks, 9(6): 1017-1023, 1996.
    • (1996) Neural Networks , vol.9 , Issue.6 , pp. 1017-1023
    • Sima, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.