메뉴 건너뛰기




Volumn 8, Issue 1, 1996, Pages 71-102

A general reduction method for periodic solutions in conservative and reversible systems

Author keywords

Conservative and reversible systems; Liapunov Schmidt reduction; Normal form theory; Periodic orbits

Indexed keywords


EID: 0002338294     PISSN: 10407294     EISSN: 15729222     Source Type: Journal    
DOI: 10.1007/BF02218615     Document Type: Article
Times cited : (12)

References (9)
  • 3
    • 53349117134 scopus 로고    scopus 로고
    • Reduction of Hopf bifurcation problems with symmetries
    • in press
    • J. Knobloch. Reduction of Hopf bifurcation problems with symmetries. Bull. Belg. Math. Soc. (in press).
    • Bull. Belg. Math. Soc.
    • Knobloch, J.1
  • 4
    • 0008069911 scopus 로고
    • Hopf bifurcation at k-fold resonances in equivariant reversible systems
    • P. Chossat (Ed.), Dynamics, Bifurcation and Symmetry. New Trends and .New Tools, Kluwer Academic, Dordrecht
    • J. Knobloch and A. Vanderbauwhede. Hopf bifurcation at k-fold resonances in equivariant reversible systems. In P. Chossat (Ed.), Dynamics, Bifurcation and Symmetry. New Trends and .New Tools, NATO ASI Series C, Vol.437, Kluwer Academic, Dordrecht, 1994, pp. 167-179.
    • (1994) NATO ASI Series C , vol.437 , pp. 167-179
    • Knobloch, J.1    Vanderbauwhede, A.2
  • 9
    • 0002341726 scopus 로고    scopus 로고
    • A general reduction method for periodic solutions near equilibria in Hamiltonian systems
    • Fields Institute Communications, AMS, Providence, RI (in press)
    • A. Vanderbauwhede and J.-C. van der Meer. A general reduction method for periodic solutions near equilibria in Hamiltonian systems. In Normal Forms and Homoclinic Chaos, Fields Institute Communications, AMS, Providence, RI (in press).
    • Normal Forms and Homoclinic Chaos
    • Vanderbauwhede, A.1    Van Der Meer, J.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.