메뉴 건너뛰기




Volumn 8, Issue 2, 1998, Pages 183-214

Vortex Motion and the Geometric Phase. Part I. Basic Configurations and Asymptotics

Author keywords

Berry phase; Geometric phase; Mixing layer; Point vortex

Indexed keywords


EID: 0002297767     PISSN: 09388974     EISSN: None     Source Type: Journal    
DOI: 10.1007/s003329900048     Document Type: Article
Times cited : (6)

References (60)
  • 1
    • 0002207807 scopus 로고
    • Quantal phase factors accompanying adiabatic changes
    • M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 392:45-57, 1984.
    • (1984) Proc. R. Soc. Lond. A , vol.392 , pp. 45-57
    • Berry, M.V.1
  • 2
    • 0000321758 scopus 로고
    • On the adiabatic theorem of quantum mechanics
    • T. Kato. On the adiabatic theorem of quantum mechanics. Phys. Soc. Japan, 5, 1950.
    • (1950) Phys. Soc. Japan , pp. 5
    • Kato, T.1
  • 3
    • 0000977878 scopus 로고
    • Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian
    • J. Hannay. Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian. J. Phys. A: Math. Gen., 18:221-230, 1985.
    • (1985) J. Phys. A: Math. Gen. , vol.18 , pp. 221-230
    • Hannay, J.1
  • 5
    • 33845940811 scopus 로고
    • Classical adiabatic angles and quantal adiabatic phase
    • M. V. Berry. Classical adiabatic angles and quantal adiabatic phase. J. Phys. A: Math. Gen, 18:15-27, 1985.
    • (1985) J. Phys. A: Math. Gen , vol.18 , pp. 15-27
    • Berry, M.V.1
  • 6
    • 30244508244 scopus 로고
    • Phase change during a cyclic quantum evolution
    • Y. Aharonov and J. Anandan. Phase change during a cyclic quantum evolution. Phys. Rev. Lett., 58(16):1593-1596, 1987.
    • (1987) Phys. Rev. Lett. , vol.58 , Issue.16 , pp. 1593-1596
    • Aharonov, Y.1    Anandan, J.2
  • 8
    • 0000413458 scopus 로고
    • How much does the rigid body rotate? A Berry's phase from the 18th century
    • R. Montgomery, How much does the rigid body rotate? A Berry's phase from the 18th century. Am. J. Phys., 59(5):394-398, 1991.
    • (1991) Am. J. Phys. , vol.59 , Issue.5 , pp. 394-398
    • Montgomery, R.1
  • 9
    • 0346913385 scopus 로고
    • Existense of the Hannay angle for single-frequency systems
    • S. Golin. Existense of the Hannay angle for single-frequency systems. J. Phys. A: Math. Gen., 21:4535-4547, 1988.
    • (1988) J. Phys. A: Math. Gen. , vol.21 , pp. 4535-4547
    • Golin, S.1
  • 10
    • 84956135124 scopus 로고
    • Symmetries,Hannay angles and precession of orbits
    • S. Golin and S. Marmi. Symmetries,Hannay angles and precession of orbits. Europhysics Lett., 8:399-404, 1989.
    • (1989) Europhysics Lett. , vol.8 , pp. 399-404
    • Golin, S.1    Marmi, S.2
  • 11
    • 0346913383 scopus 로고
    • A class of systems with measurable Hannay angles
    • S. Golin and S. Marmi. A class of systems with measurable Hannay angles. Nonlinearity, 3:507-518, 1990.
    • (1990) Nonlinearity , vol.3 , pp. 507-518
    • Golin, S.1    Marmi, S.2
  • 12
    • 0347544263 scopus 로고
    • Can one measure Hannay angles?
    • S. Golin. Can one measure Hannay angles? J. Phys. A: Math. Gen., 4573-4580, 1989.
    • (1989) J. Phys. A: Math. Gen. , pp. 4573-4580
    • Golin, S.1
  • 13
    • 0040741345 scopus 로고
    • The Hannay angles: Geometry, adiabaticity, and an example
    • S. Golin, A. Knauf, and S. Marmi. The Hannay angles: Geometry, adiabaticity, and an example. Commun. Math. Phys., 123:95-122, 1989.
    • (1989) Commun. Math. Phys. , vol.123 , pp. 95-122
    • Golin, S.1    Knauf, A.2    Marmi, S.3
  • 14
    • 0347544261 scopus 로고
    • Hannay angles and classical perturbation theory
    • J. M. Luck, P. Moussa, and M. Waldschmidt, eds., Lecture Notes in Physics. Springer: Berlin
    • S. Golin, A. Knauf, and S. Marmi. Hannay angles and classical perturbation theory. In J. M. Luck, P. Moussa, and M. Waldschmidt, eds., Number Theory and Physics, Lecture Notes in Physics. Springer: Berlin, 1990.
    • (1990) Number Theory and Physics
    • Golin, S.1    Knauf, A.2    Marmi, S.3
  • 15
    • 0039295901 scopus 로고
    • The geometric phase for chaotic systems
    • J. M. Robbins and M. V. Berry. The geometric phase for chaotic systems. Proc. R. Soc. Lond. A, 436:631-661, 1992.
    • (1992) Proc. R. Soc. Lond. A , vol.436 , pp. 631-661
    • Robbins, J.M.1    Berry, M.V.2
  • 16
    • 0001345770 scopus 로고
    • Holonomy, the quantum adiabatic theorem, and Berry's phase
    • B. Simon. Holonomy, the quantum adiabatic theorem, and Berry's phase. Phys. Rev. Lett., 51(24):2167-2170, 1983.
    • (1983) Phys. Rev. Lett. , vol.51 , Issue.24 , pp. 2167-2170
    • Simon, B.1
  • 19
    • 0000106595 scopus 로고
    • Some geometric considerations of Berry's phase
    • J. Anandan and L. Stodolsky. Some geometric considerations of Berry's phase. Phys. Rev. D, 35(8):2597-2600, 1987.
    • (1987) Phys. Rev. D , vol.35 , Issue.8 , pp. 2597-2600
    • Anandan, J.1    Stodolsky, L.2
  • 22
    • 0002982757 scopus 로고
    • Symmetry, stability, geometric phases and mechanical integrators (Part II)
    • J. E. Marsden, O. M. O'Reilly, F. J. Wicklin, and B. W. Zombro. Symmetry, stability, geometric phases and mechanical integrators (Part II). Nonlin. Sci. Today, Vol. 1, No. 1, 14-21, 1991.
    • (1991) Nonlin. Sci. Today , vol.1 , Issue.1 , pp. 14-21
    • Marsden, J.E.1    O'Reilly, O.M.2    Wicklin, F.J.3    Zombro, B.W.4
  • 24
    • 21144466647 scopus 로고
    • On geometric phases for soliton equations
    • M. S. Alber and J. E. Marsden. On geometric phases for soliton equations. Commun. Math. Phys. 149, 217-240, 1992.
    • (1992) Commun. Math. Phys. , vol.149 , pp. 217-240
    • Alber, M.S.1    Marsden, J.E.2
  • 25
    • 0008085285 scopus 로고
    • S matrix as geometric phase factor
    • R. G. Newton. S matrix as geometric phase factor. Phys. Rev. Lett. 72, 7, 954-956, 1994.
    • (1994) Phys. Rev. Lett. , vol.72 , Issue.7 , pp. 954-956
    • Newton, R.G.1
  • 26
    • 0002368839 scopus 로고
    • The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the nonintegrable case
    • R. Montgomery. The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the nonintegrable case. Commun. Math. Phys., 120:269-294, 1988.
    • (1988) Commun. Math. Phys. , vol.120 , pp. 269-294
    • Montgomery, R.1
  • 27
    • 21144476726 scopus 로고
    • Geometric phases in the motion of rigid bodies
    • M. Levi. Geometric phases in the motion of rigid bodies. Arch. Ratl. Mech. Anal., 122:213-219, 1993.
    • (1993) Arch. Ratl. Mech. Anal. , vol.122 , pp. 213-219
    • Levi, M.1
  • 28
    • 0001593198 scopus 로고    scopus 로고
    • The geometric phase of the three-body problem
    • R. Montgomery. The geometric phase of the three-body problem. Nonlinearity, 9:1341-1360, 1996.
    • (1996) Nonlinearity , vol.9 , pp. 1341-1360
    • Montgomery, R.1
  • 29
    • 0029528651 scopus 로고
    • Pattern evocation and geometric phases in mechanical systems with symmetry.
    • J. E. Marsden and J. Scheurle. Pattern evocation and geometric phases in mechanical systems with symmetry. Dyn. and Stab. of Systems, 10:315-338, 1995.
    • (1995) Dyn. and Stab. of Systems , vol.10 , pp. 315-338
    • Marsden, J.E.1    Scheurle, J.2
  • 30
    • 0001960216 scopus 로고    scopus 로고
    • Visualization of orbits and pattern evocation for the double spherical pendulum
    • Academie Verlag, Ed. by K. Kirchgässner, O. Mahrenholtz, and R. Mennicken
    • J. E. Marsden, J. Scheurle, and J. Wendlandt. Visualization of orbits and pattern evocation for the double spherical pendulum. ICIAM 95: Mathematical Research, Academie Verlag, Ed. by K. Kirchgässner, O. Mahrenholtz, and R. Mennicken, 87:213-232, 1996.
    • (1996) ICIAM 95: Mathematical Research , vol.87 , pp. 213-232
    • Marsden, J.E.1    Scheurle, J.2    Wendlandt, J.3
  • 31
    • 0003229603 scopus 로고
    • Averaging Methods in Nonlinear Dynamical System
    • Springer-Verlag, New York
    • J. A. Sanders and F. Verhulst. Averaging Methods in Nonlinear Dynamical System. Appl. Math. Sci. 59. Springer-Verlag, New York, 1985.
    • (1985) Appl. Math. Sci. , vol.59
    • Sanders, J.A.1    Verhulst, F.2
  • 32
    • 0003324745 scopus 로고    scopus 로고
    • Multiple Scale and Singular Perturbation Methods
    • Springer-Verlag, New York
    • J. Kevorkian and J. D. Cole. Multiple Scale and Singular Perturbation Methods. Appl. Math. Sci. 114, Springer-Verlag, New York, 1996.
    • (1996) Appl. Math. Sci. , vol.114
    • Kevorkian, J.1    Cole, J.D.2
  • 35
    • 0016383506 scopus 로고    scopus 로고
    • Vortex pairing: The mechanism of turbulent mixing layer growth at moderate Reynolds number
    • C. D. Winant and F. K. Browand. Vortex pairing: The mechanism of turbulent mixing layer growth at moderate Reynolds number. J. Fluid Mech., 237(63), 1974.
    • J. Fluid Mech. , vol.237 , Issue.63 , pp. 1974
    • Winant, C.D.1    Browand, F.K.2
  • 36
    • 0021372004 scopus 로고
    • The mixing layer: Deterministic models of a turbulent flow. Part I. Introduction and the two-dimensional flow
    • G. M. Corcos and F. S. Sherman. The mixing layer: Deterministic models of a turbulent flow. Part I. Introduction and the two-dimensional flow. J. Fluid Mech., 139:29-65, 1984.
    • (1984) J. Fluid Mech. , vol.139 , pp. 29-65
    • Corcos, G.M.1    Sherman, F.S.2
  • 38
    • 0020496938 scopus 로고
    • Integrate, chaotic, and turbulent vortex motion in two-dimensional flows
    • H. Aref. Integrate, chaotic, and turbulent vortex motion in two-dimensional flows. Ann. Rev. Fluid Mech. 15, 345-389, 1983.
    • (1983) Ann. Rev. Fluid Mech. , vol.15 , pp. 345-389
    • Aref, H.1
  • 39
    • 0022323468 scopus 로고
    • Chaos in the dynamics of a few vortices - Fundamentals and applications
    • F. I. Niordson and N. Olhoff, editors, Elsevier: North-Holland, Amsterdam
    • H. Aref. Chaos in the dynamics of a few vortices - Fundamentals and applications. In F. I. Niordson and N. Olhoff, editors, Theoretical and Applied Mechanics, pages 43-68. Elsevier: North-Holland, Amsterdam, 1985.
    • (1985) Theoretical and Applied Mechanics , pp. 43-68
    • Aref, H.1
  • 40
    • 0000948011 scopus 로고
    • Stochastic properties of a four-vortex system
    • E. A. Novikov and Y. B. Sedov. Stochastic properties of a four-vortex system. Sov. Phys. JETP, 48:440-444, 1978.
    • (1978) Sov. Phys. JETP , vol.48 , pp. 440-444
    • Novikov, E.A.1    Sedov, Y.B.2
  • 41
    • 84910989233 scopus 로고
    • Integrable and chaotic motions of four vortices
    • H. Aref and N. Pomphrey. Integrable and chaotic motions of four vortices. Phys. Lett. A, 78:297-300, 1980.
    • (1980) Phys. Lett. A , vol.78 , pp. 297-300
    • Aref, H.1    Pomphrey, N.2
  • 42
    • 0001755307 scopus 로고
    • Nonintegrability of a problem on the motion of four point vortices
    • S. L. Ziglin. Nonintegrability of a problem on the motion of four point vortices. Sov. Math. Dokl., 21, 296-299, 1980.
    • (1980) Sov. Math. Dokl. , vol.21 , pp. 296-299
    • Ziglin, S.L.1
  • 43
    • 0001427222 scopus 로고
    • Quasi-periodic motions of vortex systems
    • K. M. Khanin. Quasi-periodic motions of vortex systems. Physica D, 4:261-269, 1982.
    • (1982) Physica D , vol.4 , pp. 261-269
    • Khanin, K.M.1
  • 45
    • 21844507378 scopus 로고
    • Geometry and the Foucault pendulum
    • June-July
    • J. Oprea. Geometry and the Foucault pendulum. Amer. Math. Monthly, 102(6):515-522, June-July 1995.
    • (1995) Amer. Math. Monthly , vol.102 , Issue.6 , pp. 515-522
    • Oprea, J.1
  • 46
    • 0002410780 scopus 로고
    • Anticipations of the geometric phase
    • December
    • M. V. Berry. Anticipations of the geometric phase. Physics Today, 43, no. 12, 34-40, December 1990.
    • (1990) Physics Today , vol.43 , Issue.12 , pp. 34-40
    • Berry, M.V.1
  • 47
    • 0024480808 scopus 로고
    • Geometry of self-propulsion at low Reynolds number
    • A. Shapere and F. Wilczek. Geometry of self-propulsion at low Reynolds number. J. Fluid Mech., 198:557-585, 1989.
    • (1989) J. Fluid Mech. , vol.198 , pp. 557-585
    • Shapere, A.1    Wilczek, F.2
  • 49
    • 0024478671 scopus 로고
    • Efficiencies of self-propulsion at low Reynolds number
    • F. Wilczek and A. Shapere. Efficiencies of self-propulsion at low Reynolds number. J. Fluid Mech., 198:587-599, 1989.
    • (1989) J. Fluid Mech. , vol.198 , pp. 587-599
    • Wilczek, F.1    Shapere, A.2
  • 50
    • 35949013232 scopus 로고
    • Self-propulsion at low Reynolds number
    • A. Shapere and F. Wilczek. Self-propulsion at low Reynolds number. Phys. Rev. Lett., 58:2051-2054, 1987.
    • (1987) Phys. Rev. Lett. , vol.58 , pp. 2051-2054
    • Shapere, A.1    Wilczek, F.2
  • 51
    • 0003147236 scopus 로고
    • Quantum phase corrections from adiabatic iteration
    • M. V. Berry. Quantum phase corrections from adiabatic iteration. Proc. R. Soc. Lond. A, 414:31-46, 1987.
    • (1987) Proc. R. Soc. Lond. A , vol.414 , pp. 31-46
    • Berry, M.V.1
  • 52
    • 0342856793 scopus 로고
    • Geometric angles in cyclic evolutions of a classical system
    • A. Bhattacharjee and T. Sen. Geometric angles in cyclic evolutions of a classical system. Phys. Rev. A, 38:4389-4394, 1988.
    • (1988) Phys. Rev. A , vol.38 , pp. 4389-4394
    • Bhattacharjee, A.1    Sen, T.2
  • 53
    • 0002368841 scopus 로고
    • Hannay-Berry phase and the restricted three-vortex problem
    • P. K. Newton. Hannay-Berry phase and the restricted three-vortex problem. Physica D, 79:416-423, 1994.
    • (1994) Physica D , vol.79 , pp. 416-423
    • Newton, P.K.1
  • 55
    • 0000507738 scopus 로고
    • On the motion of three vortices
    • J. L. Synge. On the motion of three vortices. Can. J. Math., 1:257-270, 1949.
    • (1949) Can. J. Math. , vol.1 , pp. 257-270
    • Synge, J.L.1
  • 56
    • 0000341191 scopus 로고
    • Integrable and chaotic motions of four vortices. I. The case of identical vortices
    • H. Aref and N. Pomphrey. Integrable and chaotic motions of four vortices. I. The case of identical vortices. Proc. R. Soc. Lond. A, 380:359-387, 1982.
    • (1982) Proc. R. Soc. Lond. A , vol.380 , pp. 359-387
    • Aref, H.1    Pomphrey, N.2
  • 57
    • 0346913380 scopus 로고
    • Unsteady models for the nonlinear evolution of the mixing layer
    • August
    • E. Meiburg, P. K. Newton, N. Raju, and G. Reutsch. Unsteady models for the nonlinear evolution of the mixing layer. Phys. Rev. E, 52:1639-1657, August 1995.
    • (1995) Phys. Rev. E , vol.52 , pp. 1639-1657
    • Meiburg, E.1    Newton, P.K.2    Raju, N.3    Reutsch, G.4
  • 59
    • 0008415423 scopus 로고
    • Advection by a point vortex in a closed domain
    • L. Zannetti and P. Franzese. Advection by a point vortex in a closed domain. Eur. J. Mech. B/Fluids, 12, no. 1, 43-67, 1993.
    • (1993) Eur. J. Mech. B/Fluids , vol.12 , Issue.1 , pp. 43-67
    • Zannetti, L.1    Franzese, P.2
  • 60
    • 0005588921 scopus 로고
    • The nonintegrability of the restricted problem of two vortices in closed domains
    • L. Zannetti and P. Franzese. The nonintegrability of the restricted problem of two vortices in closed domains. Physica D, 76:99-109, 1994.
    • (1994) Physica D , vol.76 , pp. 99-109
    • Zannetti, L.1    Franzese, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.