-
1
-
-
0002207807
-
Quantal phase factors accompanying adiabatic changes
-
M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 392:45-57, 1984.
-
(1984)
Proc. R. Soc. Lond. A
, vol.392
, pp. 45-57
-
-
Berry, M.V.1
-
2
-
-
0000321758
-
On the adiabatic theorem of quantum mechanics
-
T. Kato. On the adiabatic theorem of quantum mechanics. Phys. Soc. Japan, 5, 1950.
-
(1950)
Phys. Soc. Japan
, pp. 5
-
-
Kato, T.1
-
3
-
-
0000977878
-
Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian
-
J. Hannay. Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian. J. Phys. A: Math. Gen., 18:221-230, 1985.
-
(1985)
J. Phys. A: Math. Gen.
, vol.18
, pp. 221-230
-
-
Hannay, J.1
-
5
-
-
33845940811
-
Classical adiabatic angles and quantal adiabatic phase
-
M. V. Berry. Classical adiabatic angles and quantal adiabatic phase. J. Phys. A: Math. Gen, 18:15-27, 1985.
-
(1985)
J. Phys. A: Math. Gen
, vol.18
, pp. 15-27
-
-
Berry, M.V.1
-
6
-
-
30244508244
-
Phase change during a cyclic quantum evolution
-
Y. Aharonov and J. Anandan. Phase change during a cyclic quantum evolution. Phys. Rev. Lett., 58(16):1593-1596, 1987.
-
(1987)
Phys. Rev. Lett.
, vol.58
, Issue.16
, pp. 1593-1596
-
-
Aharonov, Y.1
Anandan, J.2
-
8
-
-
0000413458
-
How much does the rigid body rotate? A Berry's phase from the 18th century
-
R. Montgomery, How much does the rigid body rotate? A Berry's phase from the 18th century. Am. J. Phys., 59(5):394-398, 1991.
-
(1991)
Am. J. Phys.
, vol.59
, Issue.5
, pp. 394-398
-
-
Montgomery, R.1
-
9
-
-
0346913385
-
Existense of the Hannay angle for single-frequency systems
-
S. Golin. Existense of the Hannay angle for single-frequency systems. J. Phys. A: Math. Gen., 21:4535-4547, 1988.
-
(1988)
J. Phys. A: Math. Gen.
, vol.21
, pp. 4535-4547
-
-
Golin, S.1
-
10
-
-
84956135124
-
Symmetries,Hannay angles and precession of orbits
-
S. Golin and S. Marmi. Symmetries,Hannay angles and precession of orbits. Europhysics Lett., 8:399-404, 1989.
-
(1989)
Europhysics Lett.
, vol.8
, pp. 399-404
-
-
Golin, S.1
Marmi, S.2
-
11
-
-
0346913383
-
A class of systems with measurable Hannay angles
-
S. Golin and S. Marmi. A class of systems with measurable Hannay angles. Nonlinearity, 3:507-518, 1990.
-
(1990)
Nonlinearity
, vol.3
, pp. 507-518
-
-
Golin, S.1
Marmi, S.2
-
12
-
-
0347544263
-
Can one measure Hannay angles?
-
S. Golin. Can one measure Hannay angles? J. Phys. A: Math. Gen., 4573-4580, 1989.
-
(1989)
J. Phys. A: Math. Gen.
, pp. 4573-4580
-
-
Golin, S.1
-
13
-
-
0040741345
-
The Hannay angles: Geometry, adiabaticity, and an example
-
S. Golin, A. Knauf, and S. Marmi. The Hannay angles: Geometry, adiabaticity, and an example. Commun. Math. Phys., 123:95-122, 1989.
-
(1989)
Commun. Math. Phys.
, vol.123
, pp. 95-122
-
-
Golin, S.1
Knauf, A.2
Marmi, S.3
-
14
-
-
0347544261
-
Hannay angles and classical perturbation theory
-
J. M. Luck, P. Moussa, and M. Waldschmidt, eds., Lecture Notes in Physics. Springer: Berlin
-
S. Golin, A. Knauf, and S. Marmi. Hannay angles and classical perturbation theory. In J. M. Luck, P. Moussa, and M. Waldschmidt, eds., Number Theory and Physics, Lecture Notes in Physics. Springer: Berlin, 1990.
-
(1990)
Number Theory and Physics
-
-
Golin, S.1
Knauf, A.2
Marmi, S.3
-
15
-
-
0039295901
-
The geometric phase for chaotic systems
-
J. M. Robbins and M. V. Berry. The geometric phase for chaotic systems. Proc. R. Soc. Lond. A, 436:631-661, 1992.
-
(1992)
Proc. R. Soc. Lond. A
, vol.436
, pp. 631-661
-
-
Robbins, J.M.1
Berry, M.V.2
-
16
-
-
0001345770
-
Holonomy, the quantum adiabatic theorem, and Berry's phase
-
B. Simon. Holonomy, the quantum adiabatic theorem, and Berry's phase. Phys. Rev. Lett., 51(24):2167-2170, 1983.
-
(1983)
Phys. Rev. Lett.
, vol.51
, Issue.24
, pp. 2167-2170
-
-
Simon, B.1
-
17
-
-
0003590414
-
-
North-Holland, Amsterdam
-
Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick. Analysis, Manifolds and Physics. North-Holland, Amsterdam, 1977.
-
(1977)
Analysis, Manifolds and Physics
-
-
Choquet-Bruhat, Y.1
DeWitt-Morette, C.2
Dillard-Bleick, M.3
-
19
-
-
0000106595
-
Some geometric considerations of Berry's phase
-
J. Anandan and L. Stodolsky. Some geometric considerations of Berry's phase. Phys. Rev. D, 35(8):2597-2600, 1987.
-
(1987)
Phys. Rev. D
, vol.35
, Issue.8
, pp. 2597-2600
-
-
Anandan, J.1
Stodolsky, L.2
-
21
-
-
0003480633
-
-
Memoirs of the American Mathematical Society, Providence, RI
-
J. E. Marsden, R. Montgomery, T. S. Ratiu. Reduction, symmetry and phases in mechanics. Memoirs of the American Mathematical Society, 436, Providence, RI, 1990.
-
(1990)
Reduction, Symmetry and Phases in Mechanics
, pp. 436
-
-
Marsden, J.E.1
Montgomery, R.2
Ratiu, T.S.3
-
22
-
-
0002982757
-
Symmetry, stability, geometric phases and mechanical integrators (Part II)
-
J. E. Marsden, O. M. O'Reilly, F. J. Wicklin, and B. W. Zombro. Symmetry, stability, geometric phases and mechanical integrators (Part II). Nonlin. Sci. Today, Vol. 1, No. 1, 14-21, 1991.
-
(1991)
Nonlin. Sci. Today
, vol.1
, Issue.1
, pp. 14-21
-
-
Marsden, J.E.1
O'Reilly, O.M.2
Wicklin, F.J.3
Zombro, B.W.4
-
24
-
-
21144466647
-
On geometric phases for soliton equations
-
M. S. Alber and J. E. Marsden. On geometric phases for soliton equations. Commun. Math. Phys. 149, 217-240, 1992.
-
(1992)
Commun. Math. Phys.
, vol.149
, pp. 217-240
-
-
Alber, M.S.1
Marsden, J.E.2
-
25
-
-
0008085285
-
S matrix as geometric phase factor
-
R. G. Newton. S matrix as geometric phase factor. Phys. Rev. Lett. 72, 7, 954-956, 1994.
-
(1994)
Phys. Rev. Lett.
, vol.72
, Issue.7
, pp. 954-956
-
-
Newton, R.G.1
-
26
-
-
0002368839
-
The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the nonintegrable case
-
R. Montgomery. The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the nonintegrable case. Commun. Math. Phys., 120:269-294, 1988.
-
(1988)
Commun. Math. Phys.
, vol.120
, pp. 269-294
-
-
Montgomery, R.1
-
27
-
-
21144476726
-
Geometric phases in the motion of rigid bodies
-
M. Levi. Geometric phases in the motion of rigid bodies. Arch. Ratl. Mech. Anal., 122:213-219, 1993.
-
(1993)
Arch. Ratl. Mech. Anal.
, vol.122
, pp. 213-219
-
-
Levi, M.1
-
28
-
-
0001593198
-
The geometric phase of the three-body problem
-
R. Montgomery. The geometric phase of the three-body problem. Nonlinearity, 9:1341-1360, 1996.
-
(1996)
Nonlinearity
, vol.9
, pp. 1341-1360
-
-
Montgomery, R.1
-
29
-
-
0029528651
-
Pattern evocation and geometric phases in mechanical systems with symmetry.
-
J. E. Marsden and J. Scheurle. Pattern evocation and geometric phases in mechanical systems with symmetry. Dyn. and Stab. of Systems, 10:315-338, 1995.
-
(1995)
Dyn. and Stab. of Systems
, vol.10
, pp. 315-338
-
-
Marsden, J.E.1
Scheurle, J.2
-
30
-
-
0001960216
-
Visualization of orbits and pattern evocation for the double spherical pendulum
-
Academie Verlag, Ed. by K. Kirchgässner, O. Mahrenholtz, and R. Mennicken
-
J. E. Marsden, J. Scheurle, and J. Wendlandt. Visualization of orbits and pattern evocation for the double spherical pendulum. ICIAM 95: Mathematical Research, Academie Verlag, Ed. by K. Kirchgässner, O. Mahrenholtz, and R. Mennicken, 87:213-232, 1996.
-
(1996)
ICIAM 95: Mathematical Research
, vol.87
, pp. 213-232
-
-
Marsden, J.E.1
Scheurle, J.2
Wendlandt, J.3
-
31
-
-
0003229603
-
Averaging Methods in Nonlinear Dynamical System
-
Springer-Verlag, New York
-
J. A. Sanders and F. Verhulst. Averaging Methods in Nonlinear Dynamical System. Appl. Math. Sci. 59. Springer-Verlag, New York, 1985.
-
(1985)
Appl. Math. Sci.
, vol.59
-
-
Sanders, J.A.1
Verhulst, F.2
-
32
-
-
0003324745
-
Multiple Scale and Singular Perturbation Methods
-
Springer-Verlag, New York
-
J. Kevorkian and J. D. Cole. Multiple Scale and Singular Perturbation Methods. Appl. Math. Sci. 114, Springer-Verlag, New York, 1996.
-
(1996)
Appl. Math. Sci.
, vol.114
-
-
Kevorkian, J.1
Cole, J.D.2
-
35
-
-
0016383506
-
Vortex pairing: The mechanism of turbulent mixing layer growth at moderate Reynolds number
-
C. D. Winant and F. K. Browand. Vortex pairing: The mechanism of turbulent mixing layer growth at moderate Reynolds number. J. Fluid Mech., 237(63), 1974.
-
J. Fluid Mech.
, vol.237
, Issue.63
, pp. 1974
-
-
Winant, C.D.1
Browand, F.K.2
-
36
-
-
0021372004
-
The mixing layer: Deterministic models of a turbulent flow. Part I. Introduction and the two-dimensional flow
-
G. M. Corcos and F. S. Sherman. The mixing layer: Deterministic models of a turbulent flow. Part I. Introduction and the two-dimensional flow. J. Fluid Mech., 139:29-65, 1984.
-
(1984)
J. Fluid Mech.
, vol.139
, pp. 29-65
-
-
Corcos, G.M.1
Sherman, F.S.2
-
38
-
-
0020496938
-
Integrate, chaotic, and turbulent vortex motion in two-dimensional flows
-
H. Aref. Integrate, chaotic, and turbulent vortex motion in two-dimensional flows. Ann. Rev. Fluid Mech. 15, 345-389, 1983.
-
(1983)
Ann. Rev. Fluid Mech.
, vol.15
, pp. 345-389
-
-
Aref, H.1
-
39
-
-
0022323468
-
Chaos in the dynamics of a few vortices - Fundamentals and applications
-
F. I. Niordson and N. Olhoff, editors, Elsevier: North-Holland, Amsterdam
-
H. Aref. Chaos in the dynamics of a few vortices - Fundamentals and applications. In F. I. Niordson and N. Olhoff, editors, Theoretical and Applied Mechanics, pages 43-68. Elsevier: North-Holland, Amsterdam, 1985.
-
(1985)
Theoretical and Applied Mechanics
, pp. 43-68
-
-
Aref, H.1
-
40
-
-
0000948011
-
Stochastic properties of a four-vortex system
-
E. A. Novikov and Y. B. Sedov. Stochastic properties of a four-vortex system. Sov. Phys. JETP, 48:440-444, 1978.
-
(1978)
Sov. Phys. JETP
, vol.48
, pp. 440-444
-
-
Novikov, E.A.1
Sedov, Y.B.2
-
41
-
-
84910989233
-
Integrable and chaotic motions of four vortices
-
H. Aref and N. Pomphrey. Integrable and chaotic motions of four vortices. Phys. Lett. A, 78:297-300, 1980.
-
(1980)
Phys. Lett. A
, vol.78
, pp. 297-300
-
-
Aref, H.1
Pomphrey, N.2
-
42
-
-
0001755307
-
Nonintegrability of a problem on the motion of four point vortices
-
S. L. Ziglin. Nonintegrability of a problem on the motion of four point vortices. Sov. Math. Dokl., 21, 296-299, 1980.
-
(1980)
Sov. Math. Dokl.
, vol.21
, pp. 296-299
-
-
Ziglin, S.L.1
-
43
-
-
0001427222
-
Quasi-periodic motions of vortex systems
-
K. M. Khanin. Quasi-periodic motions of vortex systems. Physica D, 4:261-269, 1982.
-
(1982)
Physica D
, vol.4
, pp. 261-269
-
-
Khanin, K.M.1
-
45
-
-
21844507378
-
Geometry and the Foucault pendulum
-
June-July
-
J. Oprea. Geometry and the Foucault pendulum. Amer. Math. Monthly, 102(6):515-522, June-July 1995.
-
(1995)
Amer. Math. Monthly
, vol.102
, Issue.6
, pp. 515-522
-
-
Oprea, J.1
-
46
-
-
0002410780
-
Anticipations of the geometric phase
-
December
-
M. V. Berry. Anticipations of the geometric phase. Physics Today, 43, no. 12, 34-40, December 1990.
-
(1990)
Physics Today
, vol.43
, Issue.12
, pp. 34-40
-
-
Berry, M.V.1
-
47
-
-
0024480808
-
Geometry of self-propulsion at low Reynolds number
-
A. Shapere and F. Wilczek. Geometry of self-propulsion at low Reynolds number. J. Fluid Mech., 198:557-585, 1989.
-
(1989)
J. Fluid Mech.
, vol.198
, pp. 557-585
-
-
Shapere, A.1
Wilczek, F.2
-
49
-
-
0024478671
-
Efficiencies of self-propulsion at low Reynolds number
-
F. Wilczek and A. Shapere. Efficiencies of self-propulsion at low Reynolds number. J. Fluid Mech., 198:587-599, 1989.
-
(1989)
J. Fluid Mech.
, vol.198
, pp. 587-599
-
-
Wilczek, F.1
Shapere, A.2
-
50
-
-
35949013232
-
Self-propulsion at low Reynolds number
-
A. Shapere and F. Wilczek. Self-propulsion at low Reynolds number. Phys. Rev. Lett., 58:2051-2054, 1987.
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 2051-2054
-
-
Shapere, A.1
Wilczek, F.2
-
51
-
-
0003147236
-
Quantum phase corrections from adiabatic iteration
-
M. V. Berry. Quantum phase corrections from adiabatic iteration. Proc. R. Soc. Lond. A, 414:31-46, 1987.
-
(1987)
Proc. R. Soc. Lond. A
, vol.414
, pp. 31-46
-
-
Berry, M.V.1
-
52
-
-
0342856793
-
Geometric angles in cyclic evolutions of a classical system
-
A. Bhattacharjee and T. Sen. Geometric angles in cyclic evolutions of a classical system. Phys. Rev. A, 38:4389-4394, 1988.
-
(1988)
Phys. Rev. A
, vol.38
, pp. 4389-4394
-
-
Bhattacharjee, A.1
Sen, T.2
-
53
-
-
0002368841
-
Hannay-Berry phase and the restricted three-vortex problem
-
P. K. Newton. Hannay-Berry phase and the restricted three-vortex problem. Physica D, 79:416-423, 1994.
-
(1994)
Physica D
, vol.79
, pp. 416-423
-
-
Newton, P.K.1
-
55
-
-
0000507738
-
On the motion of three vortices
-
J. L. Synge. On the motion of three vortices. Can. J. Math., 1:257-270, 1949.
-
(1949)
Can. J. Math.
, vol.1
, pp. 257-270
-
-
Synge, J.L.1
-
56
-
-
0000341191
-
Integrable and chaotic motions of four vortices. I. The case of identical vortices
-
H. Aref and N. Pomphrey. Integrable and chaotic motions of four vortices. I. The case of identical vortices. Proc. R. Soc. Lond. A, 380:359-387, 1982.
-
(1982)
Proc. R. Soc. Lond. A
, vol.380
, pp. 359-387
-
-
Aref, H.1
Pomphrey, N.2
-
57
-
-
0346913380
-
Unsteady models for the nonlinear evolution of the mixing layer
-
August
-
E. Meiburg, P. K. Newton, N. Raju, and G. Reutsch. Unsteady models for the nonlinear evolution of the mixing layer. Phys. Rev. E, 52:1639-1657, August 1995.
-
(1995)
Phys. Rev. E
, vol.52
, pp. 1639-1657
-
-
Meiburg, E.1
Newton, P.K.2
Raju, N.3
Reutsch, G.4
-
59
-
-
0008415423
-
Advection by a point vortex in a closed domain
-
L. Zannetti and P. Franzese. Advection by a point vortex in a closed domain. Eur. J. Mech. B/Fluids, 12, no. 1, 43-67, 1993.
-
(1993)
Eur. J. Mech. B/Fluids
, vol.12
, Issue.1
, pp. 43-67
-
-
Zannetti, L.1
Franzese, P.2
-
60
-
-
0005588921
-
The nonintegrability of the restricted problem of two vortices in closed domains
-
L. Zannetti and P. Franzese. The nonintegrability of the restricted problem of two vortices in closed domains. Physica D, 76:99-109, 1994.
-
(1994)
Physica D
, vol.76
, pp. 99-109
-
-
Zannetti, L.1
Franzese, P.2
|