메뉴 건너뛰기




Volumn 100, Issue 1, 1992, Pages 78-150

Decision theoretic generalizations of the PAC model for neural net and other learning applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0002192516     PISSN: 08905401     EISSN: 10902651     Source Type: Journal    
DOI: 10.1016/0890-5401(92)90010-D     Document Type: Article
Times cited : (728)

References (97)
  • 18
    • 0003637516 scopus 로고
    • A Theory of Learning Classification Rules
    • University of Technology, Sydney
    • (1990) Ph.D. Thesis
    • Buntine1
  • 20
    • 84913450344 scopus 로고    scopus 로고
    • Clarke, B., and Barron, A. (manuscript), Entropy, risk and the Bayesian central limit theorem.
  • 29
    • 0000221271 scopus 로고
    • Product units A computationally powerful and biologically plausible extension to backpropagation networks
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 133-142
    • Durbin1    Rumelhart2
  • 32
    • 0040335709 scopus 로고
    • Information dimension and the probabilistic structure of chaos
    • (1982) Z. Naturforsch. A , vol.37 , pp. 1304-1325
    • Farmer1
  • 35
    • 0025600638 scopus 로고
    • A stochastic reinforcement algorithm for learning real-valued functions
    • (1990) Neural Networks , vol.3 , Issue.6 , pp. 671-692
    • Gullapalli1
  • 37
  • 43
    • 84913450343 scopus 로고    scopus 로고
    • Inform Comput., to appear.
  • 52
    • 84972535464 scopus 로고
    • The present position in Bayesian Statistics
    • (1990) Statist. Sci. , vol.5 , Issue.1 , pp. 44-89
    • Lindley1
  • 54
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linearthreshold algorithm
    • (1988) Mach. Learning , vol.2 , pp. 285-318
    • Littlestone1
  • 55
    • 0003748256 scopus 로고
    • Bayesian Methods for Adaptive Models
    • California Institute of Technology
    • (1992) Ph.D. Thesis
    • MacKay1
  • 69
    • 0001654264 scopus 로고
    • Generalization performance of Bayes optimal classification algorithm for learning a perceptron
    • (1991) Phys. Rev. Lett. , vol.66 , Issue.20 , pp. 2677-2680
    • Opper1    Haussler2
  • 87
    • 0021518106 scopus 로고
    • A theory of the learnable
    • (1984) Comm. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant1
  • 90
    • 84913450336 scopus 로고    scopus 로고
    • Vapnik V. N., and Chervonenkis A. Ya., On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl.16 (2), 264–280
  • 95
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • (1990) Neural Networks , vol.3 , pp. 535-549
    • White1
  • 96
    • 0000243355 scopus 로고
    • Learning in artificial neural networks A statistical perspective
    • (1990) Neural Computation , vol.1 , Issue.4 , pp. 425-464
    • White1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.