메뉴 건너뛰기




Volumn , Issue , 2000, Pages 1-15

The second term of the asymptotics of the monodromy map in case of two even edges of Newton diagram

Author keywords

Center; Focus; Monodromic singular point; Monodromy map; Newton diagram; Resolution of singularity

Indexed keywords


EID: 0002109505     PISSN: 14173875     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (11)

References (6)
  • 3
    • 0005785755 scopus 로고
    • The principal term of the first return function of a monodromic singular point is linear
    • N.B.Medvedeva, The principal term of the first return function of a monodromic singular point is linear, Sibirskii matematicheskii zhurnal. 1992, Vol.33, No.2 p.116-124.
    • (1992) Sibirskii Matematicheskii Zhurnal , vol.33 , Issue.2 , pp. 116-124
    • Medvedeva, N.B.1
  • 4
    • 0001386483 scopus 로고
    • A complicated Singular point of "Center-focus" type and the Newton diagram
    • F.S.Berezovskaja and N.B.Medvedeva, A complicated Singular point of "Center-focus" type and the Newton diagram, Selecta Mathematica Vol.13, No 1, 1994, p.1-15.
    • (1994) Selecta Mathematica , vol.13 , Issue.1 , pp. 1-15
    • Berezovskaja, F.S.1    Medvedeva, N.B.2
  • 5
    • 0002556352 scopus 로고
    • The memoir of Dulak "About the limit cycles" and the ajacent questions of the local theory of the differential equations
    • Yu.S.Il'yashenko, The memoir of Dulak "About the limit cycles" and the ajacent questions of the local theory of the differential equations, Uspekhi Mat. Nauk 40(1985), p.41-78.
    • (1985) Uspekhi Mat. Nauk , vol.40 , pp. 41-78
    • Il'yashenko, Yu.S.1
  • 6
    • 0000789656 scopus 로고
    • Equivalence and decomposition of vector fields about an elementary critical point
    • Chen K.T. Equivalence and decomposition of vector fields about an elementary critical point. - Amer.J. Math., 1963, v. 85, N4, p.693-722.
    • (1963) Amer.J. Math. , vol.85 , Issue.4 , pp. 693-722
    • Chen, K.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.