메뉴 건너뛰기




Volumn 144, Issue 1, 1998, Pages 1-43

Existence of Inertial Manifolds for Partly Dissipative Reaction Diffusion Systems in Higher Space Dimensions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0002077212     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1006/jdeq.1997.3383     Document Type: Article
Times cited : (23)

References (35)
  • 2
    • 38249029133 scopus 로고
    • Invariant Manifolds for flows in Banach spaces
    • Chow S-N., Lu K. Invariant Manifolds for flows in Banach spaces. J. Differential Equations. 74:1988;285-317.
    • (1988) J. Differential Equations , vol.74 , pp. 285-317
    • Chow, S-N.1    Lu, K.2
  • 3
    • 84990581938 scopus 로고
    • Global Lyapunov exponents, Kaplan-York formulas and the dimension of the attractor for 2D Navier-Stokes equations
    • Constantin P., Foias C. Global Lyapunov exponents, Kaplan-York formulas and the dimension of the attractor for 2D Navier-Stokes equations. Comm. Pure Appl. Math. 38:1985;1-27.
    • (1985) Comm. Pure Appl. Math. , vol.38 , pp. 1-27
    • Constantin, P.1    Foias, C.2
  • 5
    • 0003241758 scopus 로고
    • Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations
    • New York: Springer-Verlag
    • Constantin P., Foias C., Nicolaenko B., Temam R. Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Appl. Math. Sciences. 70:1989;Springer-Verlag, New York.
    • (1989) Appl. Math. Sciences , vol.70
    • Constantin, P.1    Foias, C.2    Nicolaenko, B.3    Temam, R.4
  • 6
    • 0000766179 scopus 로고
    • Construction of inertial manifolds by elliptic regularization
    • Fabes E., Luskin M., Sell G. R. Construction of inertial manifolds by elliptic regularization. J. Differential Equations. 89:1991;355-387.
    • (1991) J. Differential Equations , vol.89 , pp. 355-387
    • Fabes, E.1    Luskin, M.2    Sell, G.R.3
  • 7
    • 0001047390 scopus 로고
    • Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimensions
    • Foias C., Nicolaenko B., Sell R., Temam R. Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimensions. J. Math. Pures Appl. 67:1988;197-226.
    • (1988) J. Math. Pures Appl. , vol.67 , pp. 197-226
    • Foias, C.1    Nicolaenko, B.2    Sell, R.3    Temam, R.4
  • 8
    • 0000640733 scopus 로고
    • Inertial manifolds for nonlinear evolutionary equations
    • Foias C., Sell G. R., Temam R. Inertial manifolds for nonlinear evolutionary equations. J. Differential Equations. 73:1988;309-353.
    • (1988) J. Differential Equations , vol.73 , pp. 309-353
    • Foias, C.1    Sell, G.R.2    Temam, R.3
  • 9
    • 0000263117 scopus 로고
    • Some analytic and geometric properties of the solutions of the Navier-Stokes equations
    • Foias C., Temam R. Some analytic and geometric properties of the solutions of the Navier-Stokes equations. J. Math. Pures Appl. 58:1979;339-368.
    • (1979) J. Math. Pures Appl. , vol.58 , pp. 339-368
    • Foias, C.1    Temam, R.2
  • 10
    • 0003293929 scopus 로고
    • Asymptotic Behavior of Dissipative Systems
    • Providence: Amer. Math. Soc.
    • Hale J. K. Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs. 25:1988;Amer. Math. Soc. Providence.
    • (1988) Mathematical Surveys and Monographs , vol.25
    • Hale, J.K.1
  • 11
    • 0003258399 scopus 로고
    • An Introduction to Infinite Dimensional Dynamical Systems - Geometric Theory
    • New York: Springer-Verlag
    • Hale J. K., Magalhaes L. T., Oliva W. M. An Introduction to Infinite Dimensional Dynamical Systems - Geometric Theory. Appl. Math. Sciences. 47:1984;Springer-Verlag, New York.
    • (1984) Appl. Math. Sciences , vol.47
    • Hale, J.K.1    Magalhaes, L.T.2    Oliva, W.M.3
  • 12
    • 0003304963 scopus 로고
    • Geometric Theory of Semilinear Parabolic Equations
    • New York: Springer-Verlag
    • Henry D. B. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics. 840:1981;Springer-Verlag, New York.
    • (1981) Lecture Notes in Mathematics , vol.840
    • Henry, D.B.1
  • 13
    • 0000171235 scopus 로고
    • Explicit construction of an inertial manifolds for a reaction diffusion equation
    • Jolly M. S. Explicit construction of an inertial manifolds for a reaction diffusion equation. J. Differential Equations. 78:1991;220-261.
    • (1991) J. Differential Equations , vol.78 , pp. 220-261
    • Jolly, M.S.1
  • 14
    • 0039398684 scopus 로고
    • Finite dimensional description of convective reaction diffusion equations
    • Kwak M. Finite dimensional description of convective reaction diffusion equations. J. Dynam. Differential Equations. 4:1992;515-543.
    • (1992) J. Dynam. Differential Equations , vol.4 , pp. 515-543
    • Kwak, M.1
  • 15
    • 0039260704 scopus 로고
    • Finite dimensional inertial forms for 2D Navier-Stokes equations
    • Kwak M. Finite dimensional inertial forms for 2D Navier-Stokes equations. Indiana Univ. Math. J. 41:1992;927-982.
    • (1992) Indiana Univ. Math. J. , vol.41 , pp. 927-982
    • Kwak, M.1
  • 16
    • 0000375959 scopus 로고
    • On the dimension of bounded invariant sets for the Navier-Stokes equations and other related dissipative systems
    • Ladyzhenskaya O. A. On the dimension of bounded invariant sets for the Navier-Stokes equations and other related dissipative systems. J. Soviet Math. 28:1972;714-726.
    • (1972) J. Soviet Math. , vol.28 , pp. 714-726
    • Ladyzhenskaya, O.A.1
  • 18
    • 0005750037 scopus 로고
    • Negatively invariant sets of compact maps and an extension of a theorem of Cartwright
    • Mallet-Paret J. Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. J. Differential Equations. 22:1976;331-348.
    • (1976) J. Differential Equations , vol.22 , pp. 331-348
    • Mallet-Paret, J.1
  • 19
    • 84968508885 scopus 로고
    • Inertial manifolds for reaction diffusion equation in higher space dimensions
    • Mallet-Paret J., Sell G. R. Inertial manifolds for reaction diffusion equation in higher space dimensions. J. Amer. Math. Soc. 1:1988;805-866.
    • (1988) J. Amer. Math. Soc. , vol.1 , pp. 805-866
    • Mallet-Paret, J.1    Sell, G.R.2
  • 20
    • 0001663979 scopus 로고
    • Obstructions to the existence of normally hyperbolic inertial manifolds
    • Mallet-Paret J., Sell G. R., Shao Z. Obstructions to the existence of normally hyperbolic inertial manifolds. Indiana Univ. Math. J. 42:1993;1027-1055.
    • (1993) Indiana Univ. Math. J. , vol.42 , pp. 1027-1055
    • Mallet-Paret, J.1    Sell, G.R.2    Shao, Z.3
  • 21
    • 0003990399 scopus 로고
    • On the dimension of the compact invariant sets of certain nonlinear maps
    • New York: Springer-Verlag. p. 230-242
    • Mañé R. On the dimension of the compact invariant sets of certain nonlinear maps. Lecture Notes in Math. 1981;Springer-Verlag, New York. p. 230-242.
    • (1981) Lecture Notes in Math.
    • Mañé, R.1
  • 22
    • 0000620742 scopus 로고
    • Attractors for reaction diffusion equations: Existence and estimate of their dimension
    • Marion M. Attractors for reaction diffusion equations: Existence and estimate of their dimension. Appl. Math. 25:1987;101-147.
    • (1987) Appl. Math. , vol.25 , pp. 101-147
    • Marion, M.1
  • 23
    • 0000247056 scopus 로고
    • Finite-dimensional attractors associated with partly dissipative reaction- diffusion systems
    • Marion M. Finite-dimensional attractors associated with partly dissipative reaction- diffusion systems. SIAM J. Math. Anal. 20:1989;816-844.
    • (1989) SIAM J. Math. Anal. , vol.20 , pp. 816-844
    • Marion, M.1
  • 24
    • 38249026350 scopus 로고
    • Inertial manifolds associated to partly dissipative reaction-diffusion systems
    • Marion M. Inertial manifolds associated to partly dissipative reaction-diffusion systems. J. Math. Anal. Appl. 143:1989;295-326.
    • (1989) J. Math. Anal. Appl. , vol.143 , pp. 295-326
    • Marion, M.1
  • 25
    • 0001035921 scopus 로고
    • Some global dynamical properties of the Kuramoto-Sivashinsky equations: Nonlinear stability and attractors
    • Nicolaenko B., Scheurer B., Temam R. Some global dynamical properties of the Kuramoto-Sivashinsky equations: Nonlinear stability and attractors. Physica D. 16:1985;155-183.
    • (1985) Physica D , vol.16 , pp. 155-183
    • Nicolaenko, B.1    Scheurer, B.2    Temam, R.3
  • 27
  • 28
    • 0003316678 scopus 로고
    • Semigroups of Linear Operators and Applications to Partial Differential Equations
    • New York: Springer-Verlag
    • Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. 44:1983;Springer-Verlag, New York.
    • (1983) Applied Mathematical Sciences , vol.44
    • Pazy, A.1
  • 29
    • 38249012311 scopus 로고
    • Inertial manifolds: The non-self adjoint case
    • Sell G. R., You Y. Inertial manifolds: The non-self adjoint case. J. Differential Equations. 96:1992;203-255.
    • (1992) J. Differential Equations , vol.96 , pp. 203-255
    • Sell, G.R.1    You, Y.2
  • 33
    • 0025535436 scopus 로고
    • Finite dimensional asymptotic behavior of the Swift-Hohenberg model of convection
    • Taboada M. Finite dimensional asymptotic behavior of the Swift-Hohenberg model of convection. Nonlinear Analysis. 14:1990;476-493.
    • (1990) Nonlinear Analysis , vol.14 , pp. 476-493
    • Taboada, M.1
  • 35
    • 0003278399 scopus 로고
    • Infinite Dimensional Dynamical Systems in Mechanics and Physics
    • New York: Springer-Verlag
    • Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences. 68:1988;Springer-Verlag, New York.
    • (1988) Applied Mathematical Sciences , vol.68
    • Temam, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.