-
1
-
-
0039336813
-
Equazione di Burgers stocastica e sua derivazione microscopica
-
Università di Roma "Tor Vergata".
-
Bertini Malgarini, L., 1994. Equazione di Burgers stocastica e sua derivazione microscopica. Tesi di dottorato, Università di Roma "Tor Vergata".
-
(1994)
Tesi di Dottorato
-
-
Bertini Malgarini, L.1
-
2
-
-
0002958927
-
Stochastic Partial Differetial Equations in M -Type 2 Banach Spaces
-
Brzezniak Z. Stochastic Partial Differetial Equations in. M -Type 2 Banach Spaces Potential Anal. 4:1995;1-45.
-
(1995)
Potential Anal.
, vol.4
, pp. 1-45
-
-
Brzezniak, Z.1
-
4
-
-
0002175689
-
Exponential estimates in exit probability for some diffusion processes in Hilbert spaces
-
Chow P.L., Menaldi J.-M. Exponential estimates in exit probability for some diffusion processes in Hilbert spaces. Stochastics. 29:1990;377-393.
-
(1990)
Stochastics
, vol.29
, pp. 377-393
-
-
Chow, P.L.1
Menaldi, J.-M.2
-
5
-
-
0001262773
-
Spatially homogeneous random evolutions
-
Dawson D.A., Salehi H. Spatially homogeneous random evolutions. J. Multivar. Anal. 10:1980;141-180.
-
(1980)
J. Multivar. Anal.
, vol.10
, pp. 141-180
-
-
Dawson, D.A.1
Salehi, H.2
-
7
-
-
0041116041
-
Stochastic Integration of Banach space valued functions
-
D. Reidel, Dordrecht
-
Dettweiler E., 1985. Stochastic Integration of Banach space valued functions. Stochastic Space-Time Models and Limit Theorem. D. Reidel, Dordrecht.
-
(1985)
Stochastic Space-Time Models and Limit Theorem
-
-
Dettweiler, E.1
-
8
-
-
0031138516
-
The Burgers equation with a random force and a general model for directed polymers in random environments
-
to appear
-
Kifer, Y., 1997. The Burgers equation with a random force and a general model for directed polymers in random environments. Probab. Theory Related Fields, to appear.
-
(1997)
Probab. Theory Related Fields
-
-
Kifer, Y.1
-
9
-
-
0009319932
-
On the support of solutions to the heat equation with noise
-
Mueller C. On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37:1991;225-245.
-
(1991)
Stochastics Stochastics Rep.
, vol.37
, pp. 225-245
-
-
Mueller, C.1
-
11
-
-
0038305250
-
Exponential tail estimates for infinite-dimensional stochastic convolutions
-
Peszat S. Exponential tail estimates for infinite-dimensional stochastic convolutions. Bull. Polish Acad. Sci. 40:1992;323-333.
-
(1992)
Bull. Polish Acad. Sci.
, vol.40
, pp. 323-333
-
-
Peszat, S.1
-
12
-
-
21344489559
-
Large deviation principle for stochastic evolution equations
-
Peszat S. Large deviation principle for stochastic evolution equations. Probab. Theory Related Fields. 98:1994;113-136.
-
(1994)
Probab. Theory Related Fields
, vol.98
, pp. 113-136
-
-
Peszat, S.1
-
13
-
-
0031574567
-
Stochastic evolution equations with a spatially homogeneous Wiener process
-
Peszat S., Zabczyk J. Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Process. Appl. 72:1997;187-204.
-
(1997)
Stochastic Process. Appl.
, vol.72
, pp. 187-204
-
-
Peszat, S.1
Zabczyk, J.2
-
14
-
-
0012100857
-
Invariant meaures for stochastic heat equations
-
to appear
-
Tessitore, G., Zabczyk, J., 1998. Invariant meaures for stochastic heat equations. Probab. Math. Statist., to appear.
-
(1998)
Probab. Math. Statist.
-
-
Tessitore, G.1
Zabczyk, J.2
|