메뉴 건너뛰기




Volumn 86, Issue 1, 1997, Pages 11-36

Nonstandard finite difference equations for ODEs and 1-D PDEs based on piecewise linearization

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001782371     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0096-3003(96)00146-4     Document Type: Article
Times cited : (12)

References (6)
  • 2
    • 0028494515 scopus 로고
    • A best finite-difference scheme for the Fisher equation
    • R. E. Mickens, A best finite-difference scheme for the Fisher equation, Numer. Methods Partial Diff. Eqs. 10:581-585 (1994).
    • (1994) Numer. Methods Partial Diff. Eqs. , vol.10 , pp. 581-585
    • Mickens, R.E.1
  • 3
    • 84985321062 scopus 로고
    • Comments on A second-order, chaos-free, explicit method for the numerical solution of a cubic reaction problem in neurophysiology
    • R. E. Mickens, Comments on A second-order, chaos-free, explicit method for the numerical solution of a cubic reaction problem in neurophysiology, Numer. Methods Partial Diff. Eqs. 10:587-590 (1994).
    • (1994) Numer. Methods Partial Diff. Eqs. , vol.10 , pp. 587-590
    • Mickens, R.E.1
  • 4
    • 0013402939 scopus 로고
    • Book review: Nonstandard finite difference models of differential equations
    • R. P. Agarwal, Book review: Nonstandard finite difference models of differential equations, SIAM Review 37:459 (1995).
    • (1995) SIAM Review , vol.37 , pp. 459
    • Agarwal, R.P.1
  • 5
    • 0016972776 scopus 로고
    • Higher-order numerical solutions using cubic splines
    • S. G. Rubin and P. K. Khosla, Higher-order numerical solutions using cubic splines, AIAA J. 14:851-858 (1976).
    • (1976) AIAA J. , vol.14 , pp. 851-858
    • Rubin, S.G.1    Khosla, P.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.