-
1
-
-
0028433946
-
Flattened Gaussian beams
-
F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335-341 (1994).
-
(1994)
Opt. Commun
, vol.107
, pp. 335-341
-
-
Gori, F.1
-
2
-
-
0029291544
-
Expansions of general beams in Gaussian beams
-
C. Palma and V. Bagini, “Expansions of general beams in Gaussian beams,” Opt. Commun. 116, 1-7 (1995).
-
(1995)
Opt. Commun
, vol.116
, pp. 1-7
-
-
Palma, C.1
Bagini, V.2
-
3
-
-
0030193605
-
Propagation features of axially symmetric flattened Gaussian beams
-
V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, M. Santarsiero, D. Ambrosini, and G. Schirripa Spagnolo, “Propagation features of axially symmetric flattened Gaussian beams,” J. Opt. Soc. Am. A 13, 1385-1394 (1996).
-
(1996)
J. Opt. Soc. Am. A
, vol.13
, pp. 1385-1394
-
-
Bagini, V.1
Borghi, R.2
Gori, F.3
Pacileo, A.M.4
Santarsiero, M.5
Ambrosini, D.6
Schirripa Spagnolo, G.7
-
4
-
-
0030243579
-
Beam propagation factor and the kurtosis parameter of flattened Gaussian beams
-
S.-A. Amarande, “Beam propagation factor and the kurtosis parameter of flattened Gaussian beams,” Opt. Commun. 129, 311-317 (1996).
-
(1996)
Opt. Commun
, vol.129
, pp. 311-317
-
-
Amarande, S.-A.1
-
5
-
-
0042042090
-
Far-field intensity distribution, M2 factor, and propagation of flattened Gaussian beams
-
B. Lu, B. Zhang, and S. Luo, “Far-field intensity distribution, M2 factor, and propagation of flattened Gaussian beams,” Appl. Opt. 38, 4581-4584 (1999).
-
(1999)
Appl. Opt
, vol.38
, pp. 4581-4584
-
-
Lu, B.1
Zhang, B.2
Luo, S.3
-
6
-
-
0001611610
-
Focusing of axially symmetric flattened Gaussian beams
-
M. Santarsiero, D. Aiello, R. Borghi, and S. Vicalvi, “Focusing of axially symmetric flattened Gaussian beams,” J. Mod. Opt. 44, 633-650 (1997).
-
(1997)
J. Mod. Opt
, vol.44
, pp. 633-650
-
-
Santarsiero, M.1
Aiello, D.2
Borghi, R.3
Vicalvi, S.4
-
7
-
-
0031212383
-
Propagation of paraxial circular symmetric beams in a general optical system
-
X. Deng, Y. Li, D. Fan, and Y. Qiu, “Propagation of paraxial circular symmetric beams in a general optical system,” Opt. Commun. 140, 226-230 (1997).
-
(1997)
Opt. Commun
, vol.140
, pp. 226-230
-
-
Deng, X.1
Li, Y.2
Lifan, D.3
Qiu, Y.4
-
8
-
-
0032289553
-
The integrated intensity of focused flattened Gaussian beams
-
D. Aiello, R. Borghi, M. Santarsiero, and S. Vicalvi, “The integrated intensity of focused flattened Gaussian beams,” Optik 109, 97-103 (1998).
-
(1998)
Optik
, vol.109
, pp. 97-103
-
-
Aiello, D.1
Borghi, R.2
Santarsiero, M.3
Vicalvi, S.4
-
9
-
-
0032163841
-
Focal shift of focused flat-topped beams
-
R. Borghi, M. Santarsiero, and S. Vicalvi, “Focal shift of focused flat-topped beams,” Opt. Commun. 154, 243-248 (1998).
-
(1998)
Opt. Commun
, vol.154
, pp. 243-248
-
-
Borghi, R.1
Santarsiero, M.2
Vicalvi, S.3
-
10
-
-
0032624332
-
Propagation of flattened Gaussian beams with rectangular symmetry passing through a paraxial optical ABCD system with and without aperture
-
B. Lu, S. Luo, and B. Zhang, “Propagation of flattened Gaussian beams with rectangular symmetry passing through a paraxial optical ABCD system with and without aperture,” Opt. Commun. 164, 1-6 (1999).
-
(1999)
Opt. Commun
, vol.164
, pp. 1-6
-
-
Lu, B.1
Luo, S.2
Zhang, B.3
-
11
-
-
0009807068
-
General propagation equation of flattened Gaussian beams
-
B. Lu and S. Luo, “General propagation equation of flattened Gaussian beams,” J. Opt. Soc. Am. A 17, 2001-2004 (2000).
-
(2000)
J. Opt. Soc. Am. A
, vol.17
, pp. 2001-2004
-
-
Lu, B.1
Luo, S.2
-
12
-
-
0001166329
-
Modal decomposition of flat-topped beams produced by multimode stable-cavity lasers
-
R. Borghi and M. Santarsiero, “Modal decomposition of flat-topped beams produced by multimode stable-cavity lasers,” Opt. Lett. 23, 313-315 (1998).
-
(1998)
Opt. Lett
, vol.23
, pp. 313-315
-
-
Borghi, R.1
Santarsiero, M.2
-
13
-
-
0032662209
-
Modal structure analysis for a class of axially symmetric flat-topped laser beams
-
R. Borghi and M. Santarsiero, “Modal structure analysis for a class of axially symmetric flat-topped laser beams,” IEEE J. Quantum Electron. 35, 745-750 (1999).
-
(1999)
IEEE J. Quantum Electron
, vol.35
, pp. 745-750
-
-
Borghi, R.1
Santarsiero, M.2
-
16
-
-
0000146291
-
Waveletlike basis function approach to the propagation of paraxial beams
-
R. M. Potvliege, “Waveletlike basis function approach to the propagation of paraxial beams,” J. Opt. Soc. Am. A 17, 1043-1047 (2000).
-
(2000)
J. Opt. Soc. Am. A
, vol.17
, pp. 1043-1047
-
-
Potvliege, R.M.1
-
17
-
-
0024032010
-
Solid- state laser unstable resonators with tapered reflectivity mirrors: The super-Gaussian approach
-
S. De Silvestri, P. Laporta, V. Magni, and O. Svelto, “Solid- state laser unstable resonators with tapered reflectivity mirrors: The super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172-1177 (1988).
-
(1988)
IEEE J. Quantum Electron
, vol.24
, pp. 1172-1177
-
-
de Silvestri, S.1
Laporta, P.2
Magni, V.3
Svelto, O.4
-
18
-
-
0000571208
-
Propagation of super-Gaussian field distributions
-
A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron. 24, 1071-1079 (1992).
-
(1992)
Opt. Quantum Electron
, vol.24
, pp. 1071-1079
-
-
Parent, A.1
Morin, M.2
Lavigne, P.3
-
19
-
-
0030143106
-
Three-dimensional intensity distribution of focused super-Gaussian beams
-
B. Lu, B. Zhang, and X. Wang, “Three-dimensional intensity distribution of focused super-Gaussian beams,” Opt. Commun. 126, 1-6 (1996).
-
(1996)
Opt. Commun
, vol.126
, pp. 1-6
-
-
Lu, B.1
Zhang, B.2
Wang, X.3
-
20
-
-
0002794903
-
Approximation of super-Gaussian beams by generalized flattened Gaussian beams
-
D. R. Hall and H. J. Baker, eds., Proc. SPIE 3092
-
S.-A. Amarande, “Approximation of super-Gaussian beams by generalized flattened Gaussian beams,” in XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, D. R. Hall and H. J. Baker, eds., Proc. SPIE 3092, 345-348 (1997).
-
(1997)
XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference
, pp. 345-348
-
-
Amarande, S.-A.1
-
21
-
-
0001758861
-
On the correspondence between super-Gaussian and flattened Gaussian beams
-
M. Santarsiero and R. Borghi, “On the correspondence between super-Gaussian and flattened Gaussian beams,” J. Opt. Soc. Am. A 16, 188-190 (1999).
-
(1999)
J. Opt. Soc. Am. A
, vol.16
, pp. 188-190
-
-
Santarsiero, M.1
Borghi, R.2
-
22
-
-
0032599376
-
A comparison between the flattened Gaussian beam and super-Gaussian beam
-
B. Lu, S. Luo, and B. Zhang, “A comparison between the flattened Gaussian beam and super-Gaussian beam,” Optik 110, 285-288 (1999).
-
(1999)
Optik
, vol.110
, pp. 285-288
-
-
Lu, B.1
Luo, S.2
Zhang, B.3
-
23
-
-
85010097339
-
Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions
-
A. E. Siegman, “Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions,” J. Opt. Soc. Am. 63, 1093-1094 (1973).
-
(1973)
J. Opt. Soc. Am
, vol.63
, pp. 1093-1094
-
-
Siegman, A.E.1
-
24
-
-
0000528958
-
Propagation for light beams beyond the paraxial approximation
-
T. Takenaka, M. Yokota, and O. Fukumitsu, “Propagation for light beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 2, 826-829 (1985).
-
(1985)
J. Opt. Soc. Am. A
, vol.2
, pp. 826-829
-
-
Takenaka, T.1
Yokota, M.2
Fukumitsu, O.3
-
25
-
-
84975564362
-
Complex argument Hermite-Gaussian and Laguerre-Gaussian beams
-
E. Zauderer, “Complex argument Hermite-Gaussian and Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 3, 465-469 (1986).
-
(1986)
J. Opt. Soc. Am. A
, vol.3
, pp. 465-469
-
-
Zauderer, E.1
-
27
-
-
0009480258
-
-
(McGraw-Hill, New York, Chap. 6
-
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Vol. I, Chap. 6, p. 785.
-
(1953)
Methods of Theoretical Physics
, vol.1
, pp. 785
-
-
Morse, P.M.1
Feshbach, H.2
-
28
-
-
0001300672
-
-
Gordon, New York
-
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon, New York, 1986), Vol. 1.
-
(1986)
Integrals and Series
, vol.1
-
-
Prudnikov, A.P.1
Brychkov, Y.A.2
Marichev, O.I.3
-
29
-
-
0033687978
-
The propagation of complex-argument Laguerre-Gaussian beams
-
H. Ma and B. Lu, “The propagation of complex-argument Laguerre-Gaussian beams,” Optik 111, 273-279 (2000).
-
(2000)
Optik
, vol.111
, pp. 273-279
-
-
Ma, H.1
Lu, B.2
-
30
-
-
84965041286
-
-
University Science, Mill Valley
-
A. Siegman, Lasers (University Science, Mill Valley, 1986).
-
(1986)
Lasers
-
-
Siegman, A.1
-
31
-
-
0019622131
-
Focal shifts in diffracted converging spherical waves
-
Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211-215 (1981).
-
(1981)
Opt. Commun
, vol.39
, pp. 211-215
-
-
Li, Y.1
Wolf, E.2
-
33
-
-
0001300672
-
-
Gordon, New York
-
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon, New York, 1986), Vol. 2.
-
(1986)
Integrals and Series
, vol.2
-
-
Prudnikov, A.P.1
Brychkov, Y.A.2
Marichev, O.I.3
-
34
-
-
0004139061
-
-
(Cambridge U. Press, Cambridge, UK
-
M. Born and E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge U. Press, Cambridge, UK, 1999).
-
(1999)
Principles of Optics, 7Th Expanded Ed
-
-
Born, M.1
Wolf, E.2
-
35
-
-
0000602759
-
From Maxwell to paraxial wave optics
-
M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365-1370 (1975).
-
(1975)
Phys. Rev. A
, vol.11
, pp. 1365-1370
-
-
Lax, M.1
Louisell, W.H.2
McKnight, W.B.3
|