-
2
-
-
34250236781
-
An adaptive, multilevel method for elliptic boundary value problems
-
R. E. Bank and A. H. Sherman, “An adaptive, multilevel method for elliptic boundary value problems,” Computing, vol. 26, pp. 91–105, 1981.
-
(1981)
Computing
, vol.26
, pp. 91-105
-
-
Bank, R.E.1
Sherman, A.H.2
-
3
-
-
0000061516
-
Software for C1 surface interpolation
-
C. L. Lawson, “Software for C1 surface interpolation,” in Mathematical Software III, J. Rice, Ed., New York: Academic, 1977.
-
(1977)
Mathematical Software III, J. Rice, Ed., New York: Academic,.
-
-
Lawson, C.L.1
-
5
-
-
84939355410
-
Numerical approximations on distorted lagrangian grids
-
M. J. Fritts, “Numerical approximations on distorted lagrangian grids,” Advances in Computer Methods for Partial Differential Equations, vol. III, pp. 137–142, IMACS, 1979.
-
(1979)
Advances in Computer Methods for Partial Differential Equations, IMACS
, vol.3
, pp. 137-142
-
-
Fritts, M.J.1
-
7
-
-
84916389355
-
Large-signal analysis of a silicon Read diode oscillator
-
D. Scharfetter and H. K. Gummel, “Large-signal analysis of a silicon Read diode oscillator,” IEEE Trans. Electron Devices, vol. ED-16, pp. 64–77, 1969.
-
(1969)
IEEE Trans. Electron Devices
, vol.ED-16
, pp. 64-77
-
-
Scharfetter, D.1
Gummel, H.K.2
-
8
-
-
0019045194
-
Nonplanar VLSI device analysis using the solution of Poisson's equation
-
J. A. Greenfield and R. W. Dutton, “Nonplanar VLSI device analysis using the solution of Poisson's equation,” IEEE Trans. Electron Devices, vol. ED-27, 1520–1532, 1980.
-
(1980)
IEEE Trans. Electron Devices
, vol.ED-27
, pp. 1520-1532
-
-
Greenfield, J.A.1
Dutton, R.W.2
-
9
-
-
0000245875
-
An asymmetrical finite difference network
-
R. H. Macneal, “An asymmetrical finite difference network,” Quart. Appl. Math. vol. 11, 295–310, 1953.
-
(1953)
Quart. Appl. Math.
, vol.11
, pp. 295-310
-
-
Macneal, R.H.1
-
10
-
-
84916430884
-
A self-consistent iterative scheme for one-dimensional steady state transistor calculations
-
H. K. Gummel, “A self-consistent iterative scheme for one-dimensional steady state transistor calculations,” IEEE Trans. Electron Devices, vol. ED-11, pp, 455–465, 1964.
-
(1964)
IEEE Trans. Electron Devices
, vol.ED-11
, pp. 455-465
-
-
Gummel, H.K.1
-
11
-
-
0014642598
-
Iterative scheme for 1- and 2-dimensional DC transistor simulation
-
J. W. Slotboom, “Iterative scheme for 1- and 2-dimensional DC transistor simulation,” Electron. Lett., vol. 5, p. 677–678, 1969.
-
(1969)
Electron. Lett.
, vol.5
, pp. 677-678
-
-
Slotboom, J.W.1
-
12
-
-
0014836852
-
Numerical solutions for a one-dimensional silicon n-p-n transistor
-
B. V. Ghokale, “Numerical solutions for a one-dimensional silicon n-p-n transistor,” IEEE Trans. Electron Devices, vol. ED-17, pp. 594- 1970.
-
(1970)
IEEE Trans. Electron Devices
, vol.ED-17
, pp. 594
-
-
Ghokale, B.V.1
-
13
-
-
0019007219
-
Simulation of semiconductor transport using coupled and decoupled solution techniques
-
E. M. Buturla and P. E. Cottrell, “Simulation of semiconductor transport using coupled and decoupled solution techniques,” Solid State Electronics, vol. 23, pp. 331–334, 1980.
-
(1980)
Solid State Electronics
, vol.23
, pp. 331-334
-
-
Buturla, E.M.1
Cottrell, P.E.2
-
14
-
-
0020091439
-
A three-dimensional analysis of semiconductor devices
-
A. Yoshii, H. Kitazawa, M. Tomizawa, S. Horiguchi, and T. Sudo, “A three-dimensional analysis of semiconductor devices,” IEEE Trans. Electron Devices, vol. ED-29, pp. 184–189, 1982.
-
(1982)
IEEE Trans. Electron Devices
, vol.ED-29
, pp. 184-189
-
-
Yoshii, A.1
Kitazawa, H.2
Tomizawa, M.3
Horiguchi, S.4
Sudo, T.5
-
15
-
-
0018720587
-
The charge-neutral approximation and time-dependent simulation
-
M. S. Mock, “The charge-neutral approximation and time-dependent simulation,” in NASECODE-I, pp. 120–135, Boole Press, Dublin, June 1979.
-
(1979)
NASECODE-I, Press, Dublin
, pp. 120-135
-
-
Mock, M.S.1
-
16
-
-
0003064673
-
Time discretization of a nonlinear initial value problem
-
M. S. Mock, “Time discretization of a nonlinear initial value problem,” Journal of Computational Physics, vol. 21, pp. 20–37, 1976.
-
(1976)
Journal of Computational Physics
, vol.21
, pp. 20-37
-
-
Mock, M.S.1
-
17
-
-
0041967131
-
Two-dimensional numerical analysis of latchup in a VLSI CMOS technology
-
E. C. Sangiorgi, M. R. Pinto, S. E. Swirhun, and R. W Dutton, “Two-dimensional numerical analysis of latchup in a VLSI CMOS technology,” pp. 2117–2130, this issue.
-
this issue.
, pp. 2117-2130
-
-
Sangiorgi, E.C.1
Pinto, M.R.2
Swirhun, S.E.3
Dutton, R.W.4
-
18
-
-
0022012209
-
Accurate trigger condition analysis for CMOS latch-up
-
M. R. Pinto and R. W. Dutton, “Accurate trigger condition analysis for CMOS latch-up,” IEEE Electron Device Lett., vol. EDL-6, Feb. 1985.
-
(1985)
IEEE Electron Device Lett.
, vol.EDL-6
-
-
Pinto, M.R.1
Dutton, R.W.2
-
19
-
-
0000144297
-
Global approximate Newton methods
-
R. E. Bank and D. J. Rose, “Global approximate Newton methods,” Numer. Math., vol. 37, pp. 279–295, 1981.
-
(1981)
Numer. Math.
, vol.37
, pp. 279-295
-
-
Bank, R.E.1
Rose, D.J.2
-
20
-
-
0001685079
-
An estimate for the condition number of a matrix
-
A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson, “An estimate for the condition number of a matrix,” SIAM.1. Numer. Anal., vol. 16, pp. 368–75, 1979.
-
(1979)
SIAM.1. Numer. Anal.
, vol.16
, pp. 368-375
-
-
Cline, A.K.1
Moler, C.B.2
Stewart, G.W.3
Wilkinson, J.H.4
-
21
-
-
0020180710
-
Numerical methods for semiconductor device simulation
-
R. E. Bank, D. J. Rose, and W. Fichtner, “Numerical methods for semiconductor device simulation,” IEEE Trans. Electron Devices, vol. ED-30, pp. 1031–1041, Sept. 1983.
-
(1983)
IEEE Trans. Electron Devices
, vol.ED-30
, pp. 1031-1041
-
-
Bank, R.E.1
Rose, D.J.2
Fichtner, W.3
-
22
-
-
0020180739
-
Finite boxes—A generalization of the finite-difference method suitable for semiconductor device simulation
-
A. F. Franz, G. A. Franz, S. Selberherr, C. Ringhofer, and P. Mar- kowich, kowich, “Finite boxes—A generalization of the finite-difference method suitable for semiconductor device simulation,” IEEE Trans. Electron Devices, vol. ED-30, pp. 1070–1082, Sept. 1983.
-
(1983)
IEEE Trans. Electron Devices
, vol.ED-30
, pp. 1070-1082
-
-
Franz, A.F.1
Franz, G.A.2
Selberherr, S.3
Ringhofer, C.4
Mar-kowich, P.5
-
26
-
-
84939344213
-
Preconditioned Conjugate Gradient Methods for Nonsymmetric symmetric Systems of Linear Equations
-
H. C. Elman, “Preconditioned Conjugate Gradient Methods for Nonsymmetric symmetric Systems of Linear Equations,” Yale University, Dep. of Computer Science, Res. Rep. 203, Apr, 1983.
-
(1983)
Yale University, Dep. of Computer Science, Res. Rep
, pp. 203
-
-
Elman, H.C.1
-
27
-
-
0011483904
-
On the numerical solution of nonlinear elliptic PDEs arising from semiconductor device modeling
-
W. Fichtner and D. J. Rose, “On the numerical solution of nonlinear elliptic PDEs arising from semiconductor device modeling,” in Elliptic Problem Solvers, New York: Academic, 1981, pp. 277–284
-
(1981)
Ellip-tic Problem Solvers New York: Academic
, pp. 277-284
-
-
Fichtner, W.1
Rose, D.J.2
-
28
-
-
0002497330
-
The incomplete cholesky-conjugate gradient method for the iterative solution of systems of linear equations
-
D. S. Kershaw, “The incomplete cholesky-conjugate gradient method for the iterative solution of systems of linear equations,” J. Comput. Physics, vol. 26, pp. 43–65, 1978.
-
(1978)
J. Comput. Physics
, vol.26
, pp. 43-65
-
-
Kershaw, D.S.1
-
29
-
-
84966225158
-
An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix
-
J. A. Meijerink and H. A. van der Vorst, “An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix,” Math. Computation, vol. 31, 148–162, 1977.
-
(1977)
Math. Computation
, vol.31
, pp. 148-162
-
-
Meijerink, J.A.1
Vorst, H.A.2
-
30
-
-
84976824344
-
Solving sparse symmetric sets of linear equations by preconditioned conjugate gradients
-
N. Munksgaard, “Solving sparse symmetric sets of linear equations by preconditioned conjugate gradients,” ACM Trans. Math. Software, vol. 6, pp. 206–219, 1980.
-
(1980)
ACM Trans. Math. Software
, vol.6
, pp. 206-219
-
-
Munksgaard, N.1
-
33
-
-
84937656500
-
Vectorized General Sparsity Algorithms with Backing Store
-
D. A. Calahan and P. G. Buning, “Vectorized General Sparsity Algorithms with Backing Store,” SEL Rep. 96, Systems Engineering Lab., Ann Arbor, MI, 1977.
-
(1977)
SEL Rep.96, Systems Engineering Lab., Ann Arbor, MI
-
-
Calahan, D.A.1
Buning, P.G.2
-
34
-
-
0004790099
-
Yale Sparse Matrix Package
-
S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, “Yale Sparse Matrix Package,” Yale University, Dep. of Computer Science, Res. Rep. 114, 1977.
-
(1977)
Yale University, Dep. of Computer Science, Res. Rep. 114
-
-
Eisenstat, S.C.1
Gursky, M.C.2
Schultz, M.H.3
Sherman, A.H.4
|