메뉴 건너뛰기




Volumn 6, Issue , 1997, Pages 177-209

Connectionist theory refinement: Genetically searching the space of network topologies

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001659341     PISSN: 10769757     EISSN: None     Source Type: Journal    
DOI: 10.1613/jair.368     Document Type: Article
Times cited : (46)

References (101)
  • 2
    • 0000500817 scopus 로고
    • Interactions between learning and evolution
    • Langton, C., Taylor, C., Farmer, C., & Rasmussen, S. (Eds.), Redwood City, CA. Addison-Wesley
    • Ackley, D., & Littman, M. (1992). Interactions between learning and evolution. In Langton, C., Taylor, C., Farmer, C., & Rasmussen, S. (Eds.), Artificial Life II, pp. 487-509, Redwood City, CA. Addison-Wesley.
    • (1992) Artificial Life II , pp. 487-509
    • Ackley, D.1    Littman, M.2
  • 3
    • 0008009655 scopus 로고
    • A case for Lamarckian evolution
    • Langton, C. (Ed.), Redwood City, CA. Addison-Wesley
    • Ackley, D., & Littman, M. (1994). A case for Lamarckian evolution. In Langton, C. (Ed.), Artificial Life III, pp. 3-10, Redwood City, CA. Addison-Wesley.
    • (1994) Artificial Life III , pp. 3-10
    • Ackley, D.1    Littman, M.2
  • 6
    • 0001410750 scopus 로고
    • Physical and social heredity
    • Baldwin, J. (1896). Physical and social heredity. American Naturalist, 30, 441-451.
    • (1896) American Naturalist , vol.30 , pp. 441-451
    • Baldwin, J.1
  • 7
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E., & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1, 151-160.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.1    Haussler, D.2
  • 8
    • 0000389960 scopus 로고
    • Constructing hidden units using examples and queries
    • Lippmann, R., Moody, J., & Touretzky, D. (Eds.), San Mateo, CA. Morgan Kaufmann
    • Baum, E., & Lang, K. (1991). Constructing hidden units using examples and queries. In Lippmann, R., Moody, J., & Touretzky, D. (Eds.), Advances in Neural Information Processing Systems, Vol. 3, pp. 904-910, San Mateo, CA. Morgan Kaufmann.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 904-910
    • Baum, E.1    Lang, K.2
  • 9
    • 0002853939 scopus 로고
    • Evolution, learning and culture: Computational metaphors for adaptive search
    • Belew, R. (1990). Evolution, learning and culture: Computational metaphors for adaptive search. Complex Systems, 4, 11-49.
    • (1990) Complex Systems , vol.4 , pp. 11-49
    • Belew, R.1
  • 10
    • 0002279798 scopus 로고
    • Evolving networks: Using the genetic algorithm with connectionist learning
    • Langton, C., Taylor, C., Farmer, C., & Rasmussen, S. (Eds.), Redwood City, CA. Addison-Wesley
    • Belew, R., Mclnerney, J., & Schraudolph, N. (1992). Evolving networks: Using the genetic algorithm with connectionist learning. In Langton, C., Taylor, C., Farmer, C., & Rasmussen, S. (Eds.), Artificial Life II, pp. 511-547, Redwood City, CA. Addison-Wesley.
    • (1992) Artificial Life II , pp. 511-547
    • Belew, R.1    Mclnerney, J.2    Schraudolph, N.3
  • 12
    • 84987414225 scopus 로고
    • Refinement of approximate reasoning-based controllers by reinforcement learning
    • Evanston, IL. Morgan Kaufmann
    • Berenji, H. (1991). Refinement of approximate reasoning-based controllers by reinforcement learning. In Proceedings of the Eighth International Machine Learning Workshop, pp. 475-479, Evanston, IL. Morgan Kaufmann.
    • (1991) Proceedings of the Eighth International Machine Learning Workshop , pp. 475-479
    • Berenji, H.1
  • 17
    • 84935586791 scopus 로고
    • Finding new rules for incomplete theories: Explicit biases for induction with contextual information
    • Ithaca, NY. Morgan Kaufmann
    • Danyluk, A. (1989). Finding new rules for incomplete theories: Explicit biases for induction with contextual information. In Proceedings of the Sixth International Workshop on Machine Learning, pp. 34-36, Ithaca, NY. Morgan Kaufmann.
    • (1989) Proceedings of the Sixth International Workshop on Machine Learning , pp. 34-36
    • Danyluk, A.1
  • 18
    • 0003218910 scopus 로고
    • Using prior knowledge in an NNPDA to learn context-free languages
    • Hanson, S., Cowan, J., & Giles, C. (Eds.), San Mateo, CA. Morgan Kaufmann
    • Das, A., Giles, C., & Sun, G. (1992). Using prior knowledge in an NNPDA to learn context-free languages. In Hanson, S., Cowan, J., & Giles, C. (Eds.), Advances in Neural Information Processing Systems, Vol. 5, pp. 65-72, San Mateo, CA. Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , vol.5 , pp. 65-72
    • Das, A.1    Giles, C.2    Sun, G.3
  • 22
    • 0009873685 scopus 로고
    • Rerepresenting and restructuring domain theories: A constructive induction approach
    • Donoho, S., & Rendell, L. (1995). Rerepresenting and restructuring domain theories: A constructive induction approach. Journal of Artificial Intelligence Research, 2, 411-446.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 411-446
    • Donoho, S.1    Rendell, L.2
  • 24
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • Touretzky, D. (Ed.), San Mateo, CA. Morgan Kaufmann
    • Fahlman, S., & Lebiere, C. (1989). The cascade-correlation learning architecture. In Touretzky, D. (Ed.), Advances in Neural Information Processing Systems, Vol. 2, pp. 524-532, San Mateo, CA. Morgan Kaufmann.
    • (1989) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.1    Lebiere, C.2
  • 25
    • 0003380922 scopus 로고
    • Artificial life: The coming evolution
    • Langton, C., Taylor, C., Farmer, J. D., & Rasmussen, S. (Eds.), Redwood City, CA. Addison-Wesley
    • Farmer, J., & Belin, A. (1992). Artificial life: The coming evolution. In Langton, C., Taylor, C., Farmer, J. D., & Rasmussen, S. (Eds.), Artificial Life II, pp. 815-840, Redwood City, CA. Addison-Wesley.
    • (1992) Artificial Life II , pp. 815-840
    • Farmer, J.1    Belin, A.2
  • 26
    • 0005099793 scopus 로고
    • A study of explanation-based methods for inductive learning
    • Flann, N., & Dietterich, T. (1989). A study of explanation-based methods for inductive learning. Machine Learning, 4, 187-226.
    • (1989) Machine Learning , vol.4 , pp. 187-226
    • Flann, N.1    Dietterich, T.2
  • 27
    • 21344497406 scopus 로고
    • Combining prior symbolic knowledge and constructive neural network learning
    • Fletcher, J., & Obradovic, Z. (1993). Combining prior symbolic knowledge and constructive neural network learning. Connection Science, 5, 365-375.
    • (1993) Connection Science , vol.5 , pp. 365-375
    • Fletcher, J.1    Obradovic, Z.2
  • 28
    • 0027701744 scopus 로고
    • What makes a problem hard for a genetic algorithm? Some anomalous results and their explanation
    • Forrest, S., & Mitchell, M. (1993). What makes a problem hard for a genetic algorithm? Some anomalous results and their explanation. Machine Learning, 13, 285-319.
    • (1993) Machine Learning , vol.13 , pp. 285-319
    • Forrest, S.1    Mitchell, M.2
  • 29
    • 0000783575 scopus 로고
    • The upstart algorithm: A method for constructing and training feedforward neural networks
    • Frean, M. (1990). The upstart algorithm: A method for constructing and training feedforward neural networks. Neural Computation, 2, 198-209.
    • (1990) Neural Computation , vol.2 , pp. 198-209
    • Frean, M.1
  • 30
    • 0007523219 scopus 로고
    • Integration of neural heuristics into knowledge-based inference
    • Fu, L. (1989). Integration of neural heuristics into knowledge-based inference. Connection Science, 1, 325-340.
    • (1989) Connection Science , vol.1 , pp. 325-340
    • Fu, L.1
  • 35
    • 0027696043 scopus 로고
    • Competition-based induction of decision models from examples
    • Greene, D., & Smith, S. (1993). Competition-based induction of decision models from examples. Machine Learning, 13, 229-258.
    • (1993) Machine Learning , vol.13 , pp. 229-258
    • Greene, D.1    Smith, S.2
  • 38
    • 0008440530 scopus 로고
    • Designing application-specific neural networks using the genetic algorithm
    • Touretzky, D. (Ed.), San Mateo, CA. Morgan Kaufmann
    • Harp, S., Samad, T., & Guha, A. (1989). Designing application-specific neural networks using the genetic algorithm. In Touretzky, D. (Ed.), Advances in Neural Information Processing Systems, Vol. 2, pp. 447-454, San Mateo, CA. Morgan Kaufmann.
    • (1989) Advances in Neural Information Processing Systems , vol.2 , pp. 447-454
    • Harp, S.1    Samad, T.2    Guha, A.3
  • 40
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • Hanson, S., Cowan, J., & Giles, C. (Eds.), San Mateo, CA. Morgan Kaufmann
    • Hassibi, B., & Stork, D. (1992). Second order derivatives for network pruning: Optimal brain surgeon. In Hanson, S., Cowan, J., & Giles, C. (Eds.), Advances in Neural Information Processing Systems, Vol. 5, pp. 164-171, San Mateo, CA. Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.2
  • 42
    • 0000211184 scopus 로고
    • How learning can guide evolution
    • Hinton, G., & Nowlan, S. (1987). How learning can guide evolution. Complex Systems, 1, 495-502.
    • (1987) Complex Systems , vol.1 , pp. 495-502
    • Hinton, G.1    Nowlan, S.2
  • 45
    • 0011493366 scopus 로고
    • A knowledge intensive GA for supervised learning
    • Janikow, C. (1993). A knowledge intensive GA for supervised learning. Machine Learning, 13, 198-228.
    • (1993) Machine Learning , vol.13 , pp. 198-228
    • Janikow, C.1
  • 48
    • 0002933170 scopus 로고
    • Designing neural networks using genetic algorithms with graph generation system
    • Kitano, H. (1990a). Designing neural networks using genetic algorithms with graph generation system. Complex Systems, 4, 461-476.
    • (1990) Complex Systems , vol.4 , pp. 461-476
    • Kitano, H.1
  • 49
    • 84982464075 scopus 로고
    • Empirical studies on the speed of convergence of neural network training using genetic algorithms
    • Boston, MA. AAAI/MIT Press
    • Kitano, H. (1990b). Empirical studies on the speed of convergence of neural network training using genetic algorithms. In Proceedings of the Eighth National Conference on Artificial Intelligence, pp. 789-795, Boston, MA. AAAI/MIT Press.
    • (1990) Proceedings of the Eighth National Conference on Artificial Intelligence , pp. 789-795
    • Kitano, H.1
  • 53
    • 0026624310 scopus 로고
    • Genetic generation of both the weights and architectures for a neural network
    • Seattle, WA. IEEE Press
    • Koza, J., & Rice, J. (1991). Genetic generation of both the weights and architectures for a neural network. In International Joint Conference on Neural Networks, Vol. 2, pp. 397-404, Seattle, WA. IEEE Press.
    • (1991) International Joint Conference on Neural Networks , vol.2 , pp. 397-404
    • Koza, J.1    Rice, J.2
  • 54
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Tesauro, G., Touretzky, D., & Leen, T. (Eds.), Cambridge, MA. MIT Press
    • Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. In Tesauro, G., Touretzky, D., & Leen, T. (Eds.), Advances in Neural Information Processing Systems, Vol. 7, pp. 231-238, Cambridge, MA. MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 58
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D. (1992). A practical Bayesian framework for backpropagation networks. Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.1
  • 59
    • 0027596624 scopus 로고
    • Using knowledge-based neural networks to improve algorithms: Refining the Chou-Fasman algorithm for protein folding
    • Maclin, R., & Shavlik, J. (1993). Using knowledge-based neural networks to improve algorithms: Refining the Chou-Fasman algorithm for protein folding. Machine Learning, 11, 195-215.
    • (1993) Machine Learning , vol.11 , pp. 195-215
    • Maclin, R.1    Shavlik, J.2
  • 61
    • 21344480887 scopus 로고
    • Combining connectionist and symbolic learning to refine certainty-factor rule-bases
    • Mahoney, J., & Mooney, R. (1993). Combining connectionist and symbolic learning to refine certainty-factor rule-bases. Connection Science, 5, 339-364.
    • (1993) Connection Science , vol.5 , pp. 339-364
    • Mahoney, J.1    Mooney, R.2
  • 64
    • 0000942050 scopus 로고
    • A theory and methodology of inductive learning
    • Michalski, R. (1983). A theory and methodology of inductive learning. Artificial Intelligence, 20, 111-161.
    • (1983) Artificial Intelligence , vol.20 , pp. 111-161
    • Michalski, R.1
  • 67
    • 0000531852 scopus 로고
    • Generalization as search
    • Mitchell, T. (1982). Generalization as search. Artificial Intelligence, 18, 203-226.
    • (1982) Artificial Intelligence , vol.18 , pp. 203-226
    • Mitchell, T.1
  • 69
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • Moody, J., Hanson, S., & Lippmann, R. (Eds.), San Mateo, CA. Morgan Kaufmann
    • Moody, J. (1991). The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In Moody, J., Hanson, S., & Lippmann, R. (Eds.), Advances in Neural Information Processing Systems, Vol. 4, pp. 847-854, San Mateo, CA. Morgan Kaufmann.
    • (1991) Advances in Neural Information Processing Systems , vol.4 , pp. 847-854
    • Moody, J.1
  • 70
    • 84892167083 scopus 로고
    • Using relevance to reduce network size automatically
    • Mozer, M. C., & Smolensky, P. (1989). Using relevance to reduce network size automatically. Connection Science, 1, 3-16.
    • (1989) Connection Science , vol.1 , pp. 3-16
    • Mozer, M.C.1    Smolensky, P.2
  • 72
    • 0000877308 scopus 로고
    • A distributed genetic algorithm for neural network design and training
    • Oliker, S., Furst, M., & Maimon, O. (1992). A distributed genetic algorithm for neural network design and training. Complex Systems, 6, 459-477.
    • (1992) Complex Systems , vol.6 , pp. 459-477
    • Oliker, S.1    Furst, M.2    Maimon, O.3
  • 75
    • 0029505748 scopus 로고
    • Dynamically adding symbolically meaningful nodes to knowledge-based neural networks
    • Opitz, D., & Shavlik, J. (1995). Dynamically adding symbolically meaningful nodes to knowledge-based neural networks. Knowledge-Based Systems, 8, 301-311.
    • (1995) Knowledge-Based Systems , vol.8 , pp. 301-311
    • Opitz, D.1    Shavlik, J.2
  • 76
    • 0030356238 scopus 로고    scopus 로고
    • Actively searching for an effective neural-network ensemble
    • Opitz, D., & Shavlik, J. (1996). Actively searching for an effective neural-network ensemble. Connection Science, 8, 337-353.
    • (1996) Connection Science , vol.8 , pp. 337-353
    • Opitz, D.1    Shavlik, J.2
  • 77
    • 0028407918 scopus 로고
    • Theory refinement combining analytical and empirical methods
    • Ourston, D., & Mooney, R. (1994). Theory refinement combining analytical and empirical methods. Artificial Intelligence, 66, 273-309.
    • (1994) Artificial Intelligence , vol.66 , pp. 273-309
    • Ourston, D.1    Mooney, R.2
  • 78
    • 8844261754 scopus 로고
    • The utility of knowledge in inductive learning
    • Pazzani, M., & Kibler, D. (1992). The utility of knowledge in inductive learning. Machine Learning, 9, 57-94.
    • (1992) Machine Learning , vol.9 , pp. 57-94
    • Pazzani, M.1    Kibler, D.2
  • 80
    • 0001834468 scopus 로고
    • Inductive policy: The pragmatics of bias selection
    • Provost, F., & Buchanan, B. (1995). Inductive policy: The pragmatics of bias selection. Machine Learning, 20, 35-61.
    • (1995) Machine Learning , vol.20 , pp. 35-61
    • Provost, F.1    Buchanan, B.2
  • 81
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 83
    • 0029308579 scopus 로고
    • Automated refinement of first-order Horn-clause domain theories
    • Richards, B., & Mooney, R. (1995). Automated refinement of first-order Horn-clause domain theories. Machine Learning, 19, 95-131.
    • (1995) Machine Learning , vol.19 , pp. 95-131
    • Richards, B.1    Mooney, R.2
  • 84
    • 0003336999 scopus 로고
    • Neural control for rolling mills: Incorporating domain theories to overcome data deficiency
    • Moody, J., Hanson, S., & Lippmann, R. (Eds.), San Mateo, CA. Morgan Kaufmann
    • Roscheisen, M., Hofmann, R., & Tresp, V. (1991). Neural control for rolling mills: Incorporating domain theories to overcome data deficiency. In Moody, J., Hanson, S., & Lippmann, R. (Eds.), Advances in Neural Information Processing Systems, Vol. 4, pp. 659-666, San Mateo, CA. Morgan Kaufmann.
    • (1991) Advances in Neural Information Processing Systems , vol.4 , pp. 659-666
    • Roscheisen, M.1    Hofmann, R.2    Tresp, V.3
  • 86
    • 0000245470 scopus 로고
    • Selecting a classification method by cross-validation
    • Schaffer, C. (1993). Selecting a classification method by cross-validation. Machine Learning, 13, 135-143.
    • (1993) Machine Learning , vol.13 , pp. 135-143
    • Schaffer, C.1
  • 87
    • 0006588661 scopus 로고
    • Synthesis and performance analysis of multilayer neural network architectures
    • University of Koblenz, Institute for Physics
    • Schiffmann, W., Joost, M., & Werner, R. (1992). Synthesis and performance analysis of multilayer neural network architectures. Tech. rep. 16, University of Koblenz, Institute for Physics.
    • (1992) Tech. Rep. 16
    • Schiffmann, W.1    Joost, M.2    Werner, R.3
  • 88
    • 0005889875 scopus 로고
    • Refining PID controllers using neural networks
    • Scott, G., Shavlik, J., & Ray, W. (1992). Refining PID controllers using neural networks. Neural Computation, 5, 746-757.
    • (1992) Neural Computation , vol.5 , pp. 746-757
    • Scott, G.1    Shavlik, J.2    Ray, W.3
  • 89
    • 0024940401 scopus 로고
    • Consistent inference on probabilities in layered networks, predictions and generalization
    • Washington, D.C. IEEE Press
    • Tishby, N., Levin, E., & Solla, S. (1989). Consistent inference on probabilities in layered networks, predictions and generalization. In International Joint Conference on Neural Networks, pp. 403-410, Washington, D.C. IEEE Press.
    • (1989) International Joint Conference on Neural Networks , pp. 403-410
    • Tishby, N.1    Levin, E.2    Solla, S.3
  • 92
    • 0028529307 scopus 로고
    • Knowledge-based artificial neural networks
    • Towell, G., & Shavlik, J. (1994). Knowledge-based artificial neural networks. Artificial Intelligence, 70, 119-165.
    • (1994) Artificial Intelligence , vol.70 , pp. 119-165
    • Towell, G.1    Shavlik, J.2
  • 93
    • 0000865580 scopus 로고
    • Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
    • Turney, P. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence Research, 2, 369-409.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 369-409
    • Turney, P.1
  • 95
    • 9544239146 scopus 로고
    • Synthesize, optimize, analyze, repeat (SOAR): Application of neural network tools to ECG patient monitoring
    • Honolulu, Hawaii
    • Watrous, R., Towell, G., & Glassman, M. (1993). Synthesize, optimize, analyze, repeat (SOAR): Application of neural network tools to ECG patient monitoring. In Proceedings of the Symposium on Nonlinear Theory and its Applications, pp. 565-570, Honolulu, Hawaii.
    • (1993) Proceedings of the Symposium on Nonlinear Theory and its Applications , pp. 565-570
    • Watrous, R.1    Towell, G.2    Glassman, M.3
  • 97
    • 0001886404 scopus 로고
    • On overfitting and the effective number of hidden units
    • Boulder, CO. Lawrence Erlbaum Associates
    • Weigend, A. (1993). On overfitting and the effective number of hidden units. In Proceedings of the 1993 Connectionist Models Summer School, pp. 335-342, Boulder, CO. Lawrence Erlbaum Associates.
    • (1993) Proceedings of the 1993 Connectionist Models Summer School , pp. 335-342
    • Weigend, A.1
  • 99
    • 84977486998 scopus 로고
    • Lamarckian evolution, the Baldwin effect and function optimization
    • Davidor, Y., Schwefel, H., & Manner, R. (Eds.), Springer-Verlag
    • Whitley, D., Gordon, S., & Mathias, K. (1994). Lamarckian evolution, the Baldwin effect and function optimization. In Davidor, Y., Schwefel, H., & Manner, R. (Eds.), Parallel Problem Solving from Nature - PPSN III, pp. 6-15. Springer-Verlag.
    • (1994) Parallel Problem Solving from Nature - PPSN III , pp. 6-15
    • Whitley, D.1    Gordon, S.2    Mathias, K.3
  • 101
    • 0027653233 scopus 로고
    • Evolutionary artificial neural networks
    • Yao, X. (1993). Evolutionary artificial neural networks. International Journal of Neural Systems, 4, 203-221.
    • (1993) International Journal of Neural Systems , vol.4 , pp. 203-221
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.