-
1
-
-
44949273254
-
Periodic orbits as the skeleton of classical and quantum chaos
-
Cvitanović P 1991 Periodic orbits as the skeleton of classical and quantum chaos Physica 51D 138-51
-
(1991)
Physica
, vol.51 D
, pp. 138-151
-
-
Cvitanović, P.1
-
2
-
-
0009520409
-
Strange attractor, chaotic behaviour and information flow
-
Shaw R 1981 Strange attractor, chaotic behaviour and information flow Z. Naturf. a 36 80-112
-
(1981)
Z. Naturf. a
, vol.36
, pp. 80-112
-
-
Shaw, R.1
-
3
-
-
0001217093
-
Symmetry decomposition of chaotic dynamics
-
Cvitanović P and Eckhardt B 1993 Symmetry decomposition of chaotic dynamics Nonlinearity 6 277-311
-
(1993)
Nonlinearity
, vol.6
, pp. 277-311
-
-
Cvitanović, P.1
Eckhardt, B.2
-
4
-
-
0040719046
-
Characterization of the Lorenz system taking into account the equivariance of the vector field
-
Letellier C, Dutertre P and Gouesbet G 1994 Characterization of the Lorenz system taking into account the equivariance of the vector field Phys. Rev. E 49 3492-5
-
(1994)
Phys. Rev. E
, vol.49
, pp. 3492-3495
-
-
Letellier, C.1
Dutertre, P.2
Gouesbet, G.3
-
5
-
-
3242708448
-
Topological characterization of a system with high-order symmetries: The proto-Lorenz system
-
Letellier C and Gouesbet G 1995 Topological characterization of a system with high-order symmetries: the proto-Lorenz system Phys. Rev. E 52 4754-61
-
(1995)
Phys. Rev. E
, vol.52
, pp. 4754-4761
-
-
Letellier, C.1
Gouesbet, G.2
-
7
-
-
0001881608
-
Knotted periodic orbits in dynamical systems: Lorenz's equations
-
Birman J S and Williams R F 1983 Knotted periodic orbits in dynamical systems: Lorenz's equations Topology 22 47-82
-
(1983)
Topology
, vol.22
, pp. 47-82
-
-
Birman, J.S.1
Williams, R.F.2
-
8
-
-
0347110444
-
Topological analysis of chaotic time series data from the Belousov-Zhabotinski reaction
-
Mindlin G B, Solari H G, Natiello M A, Gilmore R and Hou X J 1991 Topological analysis of chaotic time series data from the Belousov-Zhabotinski reaction J. Nonlinear Sci. 1 147-73
-
(1991)
J. Nonlinear Sci.
, vol.1
, pp. 147-173
-
-
Mindlin, G.B.1
Solari, H.G.2
Natiello, M.A.3
Gilmore, R.4
Hou, X.J.5
-
9
-
-
0015858113
-
On finite limit sets for transformations on the unit interval
-
Metropolis N, Stein M L and Stein P R 1973 On finite limit sets for transformations on the unit interval J. Comb. Theor. A 15 25-44
-
(1973)
J. Comb. Theor. A
, vol.15
, pp. 25-44
-
-
Metropolis, N.1
Stein, M.L.2
Stein, P.R.3
-
10
-
-
0003280145
-
Iterated maps on the interval as dynamical systems
-
ed A Jaffe and D Ruelle (Boston, MA: Birkhäuser)
-
Collet P and Eckmann J P 1980 Iterated maps on the interval as dynamical systems Progress in Theoretical Physics ed A Jaffe and D Ruelle (Boston, MA: Birkhäuser)
-
(1980)
Progress in Theoretical Physics
-
-
Collet, P.1
Eckmann, J.P.2
-
12
-
-
0000997452
-
The creation of horseshoes
-
Hall T 1994 The creation of horseshoes Nonlinearity 7 861-924
-
(1994)
Nonlinearity
, vol.7
, pp. 861-924
-
-
Hall, T.1
-
13
-
-
21844518726
-
Symbolic dynamics for the general quartic map
-
Xie F-G 1994 Symbolic dynamics for the general quartic map Commun. Theor. Phys. 22 43-52
-
(1994)
Commun. Theor. Phys.
, vol.22
, pp. 43-52
-
-
Xie, F.-G.1
-
14
-
-
36448999925
-
Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization
-
Letellier C, Dutertre P and Maheu B 1995 Unstable periodic orbits and templates of the Rössler system: toward a systematic topological characterization Chaos 5 272-81
-
(1995)
Chaos
, vol.5
, pp. 272-281
-
-
Letellier, C.1
Dutertre, P.2
Maheu, B.3
-
15
-
-
0012349493
-
Crises, sudden changes in chaotic attractors, and transient chaos
-
Gregobi C, Ott E and Yorke J A 1983 Crises, sudden changes in chaotic attractors, and transient chaos Physica 7D 181-200
-
(1983)
Physica
, vol.7 D
, pp. 181-200
-
-
Gregobi, C.1
Ott, E.2
Yorke, J.A.3
-
16
-
-
21344479849
-
Dynamics for a two-dimensional antisymmetric map
-
Fang H P 1994 Dynamics for a two-dimensional antisymmetric map J. Phys. A: Math. Gen. 27 5187-200
-
(1994)
J. Phys. A: Math. Gen.
, vol.27
, pp. 5187-5200
-
-
Fang, H.P.1
|