메뉴 건너뛰기




Volumn 8, Issue 3, 1998, Pages 607-646

Model indexing and smoothing parameter selection in nonparametric function estimation

Author keywords

Constraint; Cross validation; Kernel method; Negative correlation; Penalized likelihood; Plug in method

Indexed keywords


EID: 0001638770     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (15)

References (47)
  • 1
    • 0000014224 scopus 로고
    • Linear smoothers and additive models
    • Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothers and additive models (with discussion). Ann. Statist. 17, 453-555.
    • (1989) Ann. Statist. , vol.17 , pp. 453-555
    • Buja, A.1    Hastie, T.2    Tibshirani, R.3
  • 2
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
    • Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377-403.
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 3
    • 0001068677 scopus 로고
    • Adaptive spline smoothing in non Gaussian regression models
    • Gu, C. (1990). Adaptive spline smoothing in non Gaussian regression models. J. Amer. Statist. Assoc. 85, 801-807.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 801-807
    • Gu, C.1
  • 4
    • 0000457666 scopus 로고
    • Cross-validating non Gaussian data
    • Gu, C. (1992). Cross-validating non Gaussian data. J. Comput. Graph. Statist. 1, 169-179.
    • (1992) J. Comput. Graph. Statist. , vol.1 , pp. 169-179
    • Gu, C.1
  • 5
    • 21144484353 scopus 로고
    • Smoothing spline density estimation: A dimcnsionless automatic algorithm
    • Gu, C. (1993). Smoothing spline density estimation: A dimcnsionless automatic algorithm. J. Amer. Statist. Assoc. 88, 495-504.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 495-504
    • Gu, C.1
  • 6
    • 0032389885 scopus 로고    scopus 로고
    • Structural multivariate function estimation: Some automatic density and hazard estimates
    • Gu, C. (1998). Structural multivariate function estimation: Some automatic density and hazard estimates. Statist. Sinica 8, 317-335.
    • (1998) Statist. Sinica , vol.8 , pp. 317-335
    • Gu, C.1
  • 7
    • 0000606681 scopus 로고
    • Empirical functionals and efficient smoothing parameter selection
    • Hall, P. and Johnstone, I. (1992). Empirical functionals and efficient smoothing parameter selection (with discussion). J. Roy. Statist. Soc. Ser. B 54, 475-530.
    • (1992) J. Roy. Statist. Soc. Ser. B , vol.54 , pp. 475-530
    • Hall, P.1    Johnstone, I.2
  • 9
    • 0001182369 scopus 로고
    • L and generalized cross-validation in ridge regression with application to spline smoothing
    • L and generalized cross-validation in ridge regression with application to spline smoothing. Ann. Statist. 14, 1101-1112.
    • (1986) Ann. Statist. , vol.14 , pp. 1101-1112
    • Li, K.-C.1
  • 10
    • 0002369909 scopus 로고
    • Empirical choice of histograms and kernel density estimators
    • Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9, 65-78.
    • (1982) Scand. J. Statist. , vol.9 , pp. 65-78
    • Rudemo, M.1
  • 11
    • 0001426609 scopus 로고
    • Spline functions and the problem of graduation
    • Schoenberg, I. J. (1964). Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. 52, 947-950.
    • (1964) Proc. Nat. Acad. Sci. , vol.52 , pp. 947-950
    • Schoenberg, I.J.1
  • 12
    • 84935473220 scopus 로고
    • Biased and unbiased cross-validation in density estimation
    • Scott, D. W. and Terrell, G. R. (1987). Biased and unbiased cross-validation in density estimation, J. Amer. Statist. Assoc. 82, 1131-1146.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 1131-1146
    • Scott, D.W.1    Terrell, G.R.2
  • 13
    • 0001268552 scopus 로고
    • A reliable data-based bandwidth selection method for kernel density estimation
    • Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation, J. Roy. Statist. Soc. Ser. B 53, 683-690.
    • (1991) J. Roy. Statist. Soc. Ser. B , vol.53 , pp. 683-690
    • Sheather, S.J.1    Jones, M.C.2
  • 15
    • 0001640740 scopus 로고    scopus 로고
    • Robust and efficient estimation by minimising a density power divergence
    • to appear
    • Basu, A., Harris, I. R., Hjort, N. L. and Jones, M. C. (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, to appear.
    • (1998) Biometrika
    • Basu, A.1    Harris, I.R.2    Hjort, N.L.3    Jones, M.C.4
  • 16
    • 0004134624 scopus 로고
    • Atomic decomposition by basis pursuit
    • Dept of Statistics, Stanford University, Stanford CA
    • Chen, S., Donoho, D. and Saunders, M. (1995). Atomic decomposition by basis pursuit. Technical Report 479, Dept of Statistics, Stanford University, Stanford CA.
    • (1995) Technical Report , vol.479
    • Chen, S.1    Donoho, D.2    Saunders, M.3
  • 17
    • 0000128671 scopus 로고
    • Asymptotics for M type smoothing splines
    • Cox, D. (1983). Asymptotics for M type smoothing splines. Ann. Math. Statist. 11, 530-551.
    • (1983) Ann. Math. Statist. , vol.11 , pp. 530-551
    • Cox, D.1
  • 20
    • 0001555721 scopus 로고
    • L in ridge regression and regularization
    • L in ridge regression and regularization. Ann. Statist. 19, 1950-1963.
    • (1991) Ann. Statist. , vol.19 , pp. 1950-1963
    • Girard, D.A.1
  • 21
    • 21844498899 scopus 로고
    • L procedures: Comments, new results and application to image recovery problems
    • L procedures: Comments, new results and application to image recovery problems. Comput. Statist. 10, 205-231.
    • (1995) Comput. Statist. , vol.10 , pp. 205-231
    • Girard, D.1
  • 22
    • 0000158467 scopus 로고    scopus 로고
    • Adaptive tuning of numerical weather prediction models: Simultaneous estimation of weighting, smoothing and physical parameters
    • Gong, J., Wahba, G., Johnson, D. and Tribbia, J. (1998). Adaptive tuning of numerical weather prediction models: simultaneous estimation of weighting, smoothing and physical parameters. Monthly Weather Review 125, 210-231.
    • (1998) Monthly Weather Review , vol.125 , pp. 210-231
    • Gong, J.1    Wahba, G.2    Johnson, D.3    Tribbia, J.4
  • 23
    • 84870217825 scopus 로고
    • Loss and risk in smoothing parameter selection
    • Grund, B., Hall, P. and Marron, J. S. (1994). Loss and risk in smoothing parameter selection. J. Nonparametr. Statist. 4, 107-132.
    • (1994) J. Nonparametr. Statist. , vol.4 , pp. 107-132
    • Grund, B.1    Hall, P.2    Marron, J.S.3
  • 24
    • 21144466328 scopus 로고
    • Smoothing spline density estimation: Theory
    • Gu, C. and Qiu, C. (1993). Smoothing spline density estimation: Theory. Ann. Statist. 21, 217-234.
    • (1993) Ann. Statist. , vol.21 , pp. 217-234
    • Gu, C.1    Qiu, C.2
  • 25
    • 0000418028 scopus 로고
    • On Kullback-Leibler loss and density estimation
    • Hall, P. (1987). On Kullback-Leibler loss and density estimation. Ann. Statist. 15, 1491-1519.
    • (1987) Ann. Statist. , vol.15 , pp. 1491-1519
    • Hall, P.1
  • 26
    • 38249035197 scopus 로고
    • Estimation of integrated squared density derivatives
    • Hall, P. and Marron, J. S. (1987). Estimation of integrated squared density derivatives. Statist. Probab. Lett. 6, 109-115.
    • (1987) Statist. Probab. Lett. , vol.6 , pp. 109-115
    • Hall, P.1    Marron, J.S.2
  • 27
    • 0000531302 scopus 로고
    • Lower bounds for bandwidth selection in density estimation
    • Hall, P. and Marron, J. S. (1991). Lower bounds for bandwidth selection in density estimation. Probab. Theory Rel. Fields 90, 149-173.
    • (1991) Probab. Theory Rel. Fields , vol.90 , pp. 149-173
    • Hall, P.1    Marron, J.S.2
  • 28
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved AIC criterion
    • Hurvich, C. M., Simonoff, J. S. and Tsai, C. L. (1998). Smoothing parameter selection in nonparametric regression using an improved AIC criterion. J. Roy. Statist. Soc. Ser. B 60, 271-293.
    • (1998) J. Roy. Statist. Soc. Ser. B , vol.60 , pp. 271-293
    • Hurvich, C.M.1    Simonoff, J.S.2    Tsai, C.L.3
  • 29
    • 0011833361 scopus 로고
    • The role of ISE and MISE in density estimation
    • Jones, M. C. (1991). The role of ISE and MISE in density estimation. Statist. Probab. Lett. 12, 51-56.
    • (1991) Statist. Probab. Lett. , vol.12 , pp. 51-56
    • Jones, M.C.1
  • 30
    • 15844372752 scopus 로고    scopus 로고
    • On some kernel density estimation bandwidth selectors related to the double kernel method
    • to appear
    • Jones, M. C. (1998). On some kernel density estimation bandwidth selectors related to the double kernel method. Sankhya Ser. A, to appear.
    • (1998) Sankhya Ser. A
    • Jones, M.C.1
  • 31
    • 0040239677 scopus 로고
    • On a class of kernel density estimate bandwidth selectors
    • Jones, M. C. and Kappenman, R. F. (1992). On a class of kernel density estimate bandwidth selectors. Scand. J. Statist. 19, 337-349.
    • (1992) Scand. J. Statist. , vol.19 , pp. 337-349
    • Jones, M.C.1    Kappenman, R.F.2
  • 32
    • 44949272019 scopus 로고
    • Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives
    • Jones, M. C. and Sheather, S. J. (1991). Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statist. Probab. Lett. 11, 511-514.
    • (1991) Statist. Probab. Lett. , vol.11 , pp. 511-514
    • Jones, M.C.1    Sheather, S.J.2
  • 33
    • 0001652263 scopus 로고
    • Quantile smoothing splines
    • Koenker, R., Ng, P. and Portnoy, S. (1994). Quantile smoothing splines. Biometrika 81, 673-680.
    • (1994) Biometrika , vol.81 , pp. 673-680
    • Koenker, R.1    Ng, P.2    Portnoy, S.3
  • 34
    • 21844507395 scopus 로고
    • Visual error criteria for qualitative smoothing
    • Marron, J. S. and Tsybakov, A. B. (1995). Visual error criteria for qualitative smoothing. J. Amer. Statist. Assoc. 90, 499-507.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 499-507
    • Marron, J.S.1    Tsybakov, A.B.2
  • 35
    • 44049111982 scopus 로고
    • Nonlinear total-variation-based noise removal algorithms
    • Rudin, L., Osher, S. and Fatemi, E. (1992). Nonlinear total-variation-based noise removal algorithms. Physica D 60, 259-268.
    • (1992) Physica D , vol.60 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 36
    • 84950438567 scopus 로고
    • Comment on "How far are automatically chosen regression smoothing parameters from their optimum?"
    • by W. Härdle, P. Hall and J. S. Marron
    • Scott, D. W. (1988). Comment on "How far are automatically chosen regression smoothing parameters from their optimum?" by W. Härdle, P. Hall and J. S. Marron. J. Amer. Statist. Assoc. 83, 96-98.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 96-98
    • Scott, D.W.1
  • 38
    • 0000997747 scopus 로고
    • Spline smoothing: The equivalent variable kernel method
    • Silverman, B. W. (1984). Spline smoothing: the equivalent variable kernel method. Ann. Statist. 12, 898-916.
    • (1984) Ann. Statist. , vol.12 , pp. 898-916
    • Silverman, B.W.1
  • 41
    • 0003103778 scopus 로고
    • Optimal convergence properties of variable knot, kernel and orthogonal series methods for density estimation
    • Wahba, G. (1975a). Optimal convergence properties of variable knot, kernel and orthogonal series methods for density estimation. Ann. Statist. 3, 15-29.
    • (1975) Ann. Statist. , vol.3 , pp. 15-29
    • Wahba, G.1
  • 42
    • 0000238658 scopus 로고
    • Smoothing noisy data by spline functions
    • Wahba, G. (1975b). Smoothing noisy data by spline functions. Numer. Math. 24, 383-393.
    • (1975) Numer. Math. , vol.24 , pp. 383-393
    • Wahba, G.1
  • 43
    • 0000939344 scopus 로고
    • Bayesian "confidence intervals" for the cross-validated smoothing spline
    • Wahba, G. (1983). Bayesian "confidence intervals" for the cross-validated smoothing spline. J. Roy. Statist. Soc. Ser. B 45, 133-150.
    • (1983) J. Roy. Statist. Soc. Ser. B , vol.45 , pp. 133-150
    • Wahba, G.1
  • 44
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. Technical Report 984r
    • Department of Statistics, University of Wisconsin, Madison WI. (Edited by B. Schölkopf, C. Burges and A. Smola), MIT Press
    • Wahba, G. (1998). Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. Technical Report 984r, Department of Statistics, University of Wisconsin, Madison WI. In Advances in Kernel Methods-Support Vector Learning (Edited by B. Schölkopf, C. Burges and A. Smola), MIT Press.
    • (1998) Advances in Kernel Methods-Support Vector Learning
    • Wahba, G.1
  • 45
    • 0000799343 scopus 로고
    • Behavior near zero of the distribution of GCV smoothing parameter estimates
    • Wahba, G. and Wang, Y. (1995). Behavior near zero of the distribution of GCV smoothing parameter estimates. Statist. Probab. Lett. 25, 105-111.
    • (1995) Statist. Probab. Lett. , vol.25 , pp. 105-111
    • Wahba, G.1    Wang, Y.2
  • 46
    • 0002617598 scopus 로고
    • A completely automatic French curve
    • Wahba, G. and Wold, S. (1975). A completely automatic French curve. Commun. Statist. 4, 1-17.
    • (1975) Commun. Statist. , vol.4 , pp. 1-17
    • Wahba, G.1    Wold, S.2
  • 47
    • 21444449622 scopus 로고    scopus 로고
    • A generalized approximate cross validation for smoothing splines with non-Gaussian data
    • Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statist. Sinica 6, 675-692.
    • (1996) Statist. Sinica , vol.6 , pp. 675-692
    • Xiang, D.1    Wahba, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.