-
2
-
-
0004261226
-
-
C. Dekker, A.F.M. Arts, H.W. de Wijn, A.J. van Duyneveldt, and J.A. Mydosh, Phys. Rev. B 40, 11 243 (1989).
-
(1989)
Phys. Rev. B
, vol.40
, pp. 11-243
-
-
Dekker, C.1
Arts, A.F.M.2
de Wijn, H.W.3
van Duyneveldt, A.J.4
Mydosh, J.A.5
-
4
-
-
30244503879
-
-
S. Z. Ren, W. F. Shi, W. B. Zhang, and C. M. Sorensen, Phys. Rev. A 45, 2416 (1992).
-
(1992)
Phys. Rev. A
, vol.45
, pp. 2416
-
-
Ren, S.Z.1
Shi, W.F.2
Zhang, W.B.3
Sorensen, C.M.4
-
11
-
-
0028098549
-
-
S.D. Mahanti, H. Seong, S. Sen, and T. Cagin, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 245, 141 (1994)
-
(1994)
Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A
, vol.245
, pp. 141
-
-
Mahanti, S.D.1
Seong, H.2
Sen, S.3
Cagin, T.4
-
19
-
-
0004195655
-
-
W.E. Brittin, B.W. Downs, J. Downs, Wiley-Interscience, New York, Vol. 3;
-
R. Zwanzig, in Lectures in Theoretical Physics, edited by W.E. Brittin, B.W. Downs, and J. Downs (Wiley-Interscience, New York, 1961), Vol. 3
-
(1961)
Lectures in Theoretical Physics
-
-
Zwanzig, R.1
-
28
-
-
0346023409
-
-
P. Grigolini, G. Grosso, G. Pastori Parravicini, and M. Sparpaglione, Phys. Rev. B 27, 7342 (1983)
-
(1983)
Phys. Rev. B
, vol.27
, pp. 7342
-
-
Grigolini, P.1
Grosso, G.2
Pastori Parravicini, G.3
Sparpaglione, M.4
-
29
-
-
0000246136
-
-
M. Giordano, P. Grigolini, D. Leporini, and P. Marin, Phys. Rev. A 28, 2474 (1983)
-
(1983)
Phys. Rev. A
, vol.28
, pp. 2474
-
-
Giordano, M.1
Grigolini, P.2
Leporini, D.3
Marin, P.4
-
32
-
-
0039081136
-
-
J.C. Phillips, National Science Foundation–Research Excellence for Undergraduates (NSF-REU) Program Report, Michigan State University, 1992
-
This issue is briefly discussed in S. Sen and J.C. Phillips, Physica A 216, 271 (1995) and inJ.C. Phillips, National Science Foundation–Research Excellence for Undergraduates (NSF-REU) Program Report, Michigan State University, 1992.
-
(1995)
Physica A
, vol.216
, pp. 271
-
-
Sen, S.1
Phillips, J.C.2
-
34
-
-
5344256924
-
-
references therein
-
L. Fronzoni, P. Grigolini, R. Mannella, and B. Zambon, J. Stat. Phys. 41, 553 (1985), and references therein.
-
(1985)
J. Stat. Phys.
, vol.41
, pp. 553
-
-
Fronzoni, L.1
Grigolini, P.2
Mannella, R.3
Zambon, B.4
-
35
-
-
0011895619
-
-
S. Sen, Physica A 186, 285 (1992)
-
(1992)
Physica A
, vol.186
, pp. 285
-
-
Sen, S.1
-
36
-
-
0011805689
-
-
The latter reference discusses the notion of the dynamical universality class in some detail
-
S. SenPhys. Rev. B 53, 5104 (1996). The latter reference discusses the notion of the dynamical universality class in some detail.
-
(1996)
Phys. Rev. B
, vol.53
, pp. 5104
-
-
Sen, S.1
-
37
-
-
0009454202
-
-
The complete program for numerical calculations appropriate for handling unsolvable infinite continued fractions appears in
-
The complete program for numerical calculations appropriate for handling unsolvable infinite continued fractions appears in Z.-X. Cai, S. Sen, and S.D. Mahanti, Phys. Rev. Lett. 68, 1637 (1992)
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1637
-
-
Cai, Z.-X.1
Sen, S.2
Mahanti, S.D.3
-
40
-
-
2842606953
-
-
For some successful applications see S. Sen, A.K.B. Engebretson, V.L. Gates, and L.I. McCann, Phys. Rev. B 50, R4244 (1994)
-
(1994)
Phys. Rev. B
, vol.50
-
-
Sen, S.1
Engebretson, A.K.B.2
Gates, V.L.3
McCann, L.I.4
-
44
-
-
0011895619
-
-
S. SenPhysica A 186, 285 (1992).
-
(1992)
Physica A
, vol.186
, pp. 285
-
-
Sen, S.1
-
47
-
-
85037250123
-
-
J.C.P. and S.S. have tried to approximately obtain the velocity relaxation function from the infinite continued fraction with the (Formula presented) of the form in Eq. (42). By replacing this nonconvergent infinite continued fraction with a finite one with (Formula presented) levels, we obtained a (Formula presented) relaxation at the largest times we could study without falling victim to round-off errors (Formula presented). This result of course implies that we were not able to reach the asymptotic limit which should have given (Formula presented) behavior and is typical of problems encountered when continued fractions with (Formula presented) are perturbatively estimated. Clearly, extracting the result in some other way than directly estimating the nonconvergent infinite continued fractions for (Formula presented) significantly greater than 2 is the desirable way to handle these problems
-
J.C.P. and S.S. have tried to approximately obtain the velocity relaxation function from the infinite continued fraction with the (Formula presented) of the form in Eq. (42). By replacing this nonconvergent infinite continued fraction with a finite one with (Formula presented) levels, we obtained a (Formula presented) relaxation at the largest times we could study without falling victim to round-off errors (Formula presented). This result of course implies that we were not able to reach the asymptotic limit which should have given (Formula presented) behavior and is typical of problems encountered when continued fractions with (Formula presented) are perturbatively estimated. Clearly, extracting the result in some other way than directly estimating the nonconvergent infinite continued fractions for (Formula presented) significantly greater than 2 is the desirable way to handle these problems.
-
-
-
-
48
-
-
85037219743
-
-
See also H.S. Wall, Analytic Theory of Continued Fractions (Chelsea, New York, 1948)
-
See also H.S. Wall, Analytic Theory of Continued Fractions (Chelsea, New York, 1948).
-
-
-
-
49
-
-
42149197231
-
-
M.H. Lee, J. Kim, W. Cummings, and R. Dekeyser, J. Phys.: Condens. Matter 7, 3187 (1995).
-
(1995)
J. Phys.: Condens. Matter
, vol.7
, pp. 3187
-
-
Lee, M.H.1
Kim, J.2
Cummings, W.3
Dekeyser, R.4
|