-
1
-
-
12044251389
-
-
G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
-
(1994)
Rev. Mod. Phys.
, vol.66
, pp. 1125
-
-
Blatter, G.1
Feigel’man, M.V.2
Geshkenbein, V.B.3
Larkin, A.I.4
Vinokur, V.M.5
-
7
-
-
4143063087
-
-
R. G. Beck, D. E. Farrell, J. P. Rice, D. M. Ginsberg, and V. G. Kogan, Phys. Rev. Lett. 68, 1594 (1992);
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1594
-
-
Beck, R.G.1
Farrell, D.E.2
Rice, J.P.3
Ginsberg, D.M.4
Kogan, V.G.5
-
10
-
-
6244262168
-
-
H. Safar, P. L. Gammel, D. A. Huse, D. J. Bishop, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 69, 824 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 824
-
-
Safar, H.1
Gammel, P.L.2
Huse, D.A.3
Bishop, D.J.4
Rice, J.P.5
Ginsberg, D.M.6
-
11
-
-
3743098069
-
-
W. K. Kwok, S. Fleshler, V. Welp, V. M. Vinokur, J. Downey, G. W. Crabtree, and M. M. Miller, Phys. Rev. Lett. 69, 3370 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 3370
-
-
Kwok, W.K.1
Fleshler, S.2
Welp, V.3
Vinokur, V.M.4
Downey, J.5
Crabtree, G.W.6
Miller, M.M.7
-
12
-
-
0029323364
-
-
E. Zeldov, D. Majer, M. Konczykowski, V. B. Geshkenbein, V. M. Vinokur, and H. Strikman, Nature (London) 375, 373 (1995).
-
(1995)
Nature (London)
, vol.375
, pp. 373
-
-
Zeldov, E.1
Majer, D.2
Konczykowski, M.3
Geshkenbein, V.B.4
Vinokur, V.M.5
Strikman, H.6
-
13
-
-
7544242299
-
-
U. Welp, J. A. Fendrich, W. K. Kwok, G. W. Crabtree, and B. W. Veal, Phys. Rev. Lett. 76, 4809 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.76
, pp. 4809
-
-
Welp, U.1
Fendrich, J.A.2
Kwok, W.K.3
Crabtree, G.W.4
Veal, B.W.5
-
14
-
-
0029782809
-
-
A. Schilling, R. A. Fisher, N. E. Phillips, V. Welp, D. Dasgupta, W. K. Kwok, and G. W. Crabtree, Nature (London) 382, 791 (1996).
-
(1996)
Nature (London)
, vol.382
, pp. 791
-
-
Schilling, A.1
Fisher, R.A.2
Phillips, N.E.3
Welp, V.4
Dasgupta, D.5
Kwok, W.K.6
Crabtree, G.W.7
-
16
-
-
85038925107
-
-
Another possibility is that the longitudinal gauge symmetry is recovered first, while the translational symmetry remains broken, yielding a “supersolid” phase.
-
Another possibility is that the longitudinal gauge symmetry is recovered first, while the translational symmetry remains broken, yielding a “supersolid” phase.
-
-
-
-
17
-
-
0010921555
-
-
M. V. Feigel’man, V. B. Geshkenbein, and V. M. Vinokur, Pis’ma Zh. Éksp. Fiz. 52, 1141 (1990) [JETP Lett. 52, 546 (1990)];
-
(1990)
JETP Lett.
, vol.52
, pp. 546
-
-
Feigel’man, M.V.1
Geshkenbein, V.B.2
Vinokur, V.M.3
-
18
-
-
0000713065
-
-
M. V. Feigel’man, V. B. Geshkenbein, L. B. Ioffe, and A. I. Larkin, Phys. Rev. B 48, 16 641 (1993).
-
(1993)
Phys. Rev. B
, vol.48
, pp. 16
-
-
Feigel’man, M.V.1
Geshkenbein, V.B.2
Ioffe, L.B.3
Larkin, A.I.4
-
19
-
-
25544432918
-
-
Y.-H. Li and S. Teitel, Phys. Rev. B 47, 359 (1993).
-
(1993)
Phys. Rev. B
, vol.47
, pp. 359
-
-
Teitel, S.1
-
21
-
-
7544228288
-
-
Phys. Rev. Lett.T. ChenS. Teitel74, 2792 (1995).
-
(1995)
, vol.74
, pp. 2792
-
-
Chen, T.1
Teitel, S.2
-
27
-
-
4043158787
-
-
W. Jiang, N.-C. Yeh, D. S. Reed, U. Kriplani, D. A. Beam, M. Konczykowski, T. A. Tombrello, and F. Holtzberg, Phys. Rev. Lett. 72, 550 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 550
-
-
Jiang, W.1
Reed, D.S.2
Kriplani, U.3
Beam, D.A.4
Konczykowski, M.5
Tombrello, T.A.6
Holtzberg, F.7
-
28
-
-
4243820689
-
-
D. López, E. F. Righi, G. Nieva, and F. de la Cruz, Phys. Rev. Lett. 76, 4034 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 4034
-
-
López, D.1
Righi, E.F.2
Nieva, G.3
de la Cruz, F.4
-
29
-
-
0038983730
-
-
D. López, E. F. Righi, G. Nieva, and F. de la Cruz, W. K. Kwok, J. A. Fendrich, G. W. Crabtree, and L. Paulius, Phys. Rev. B 53, 8895 (1996).
-
(1996)
Phys. Rev. B
, vol.53
, pp. 8895
-
-
López, D.1
Righi, E.F.2
Nieva, G.3
de la Cruz, F.4
Kwok, W.K.5
Fendrich, J.A.6
Crabtree, G.W.7
Paulius, L.8
-
46
-
-
85038894641
-
-
As stressed by TN (Ref. 28) this factorization corresponds to the computation of the one-loop contributions to the correlator (Formula presented) and goes beyond the Gaussian approximation. It yields a consistent result only for the transverse part of the tilt autocorrelator that determines the tilt modulus. To evaluate corrections to the longitudinal part of (Formula presented) to the same order one also needs to evaluate one-loop corrections to the phase correlator, (Formula presented)
-
As stressed by TN (Ref. 28) this factorization corresponds to the computation of the one-loop contributions to the correlator (Formula presented) and goes beyond the Gaussian approximation. It yields a consistent result only for the transverse part of the tilt autocorrelator that determines the tilt modulus. To evaluate corrections to the longitudinal part of (Formula presented) to the same order one also needs to evaluate one-loop corrections to the phase correlator, (Formula presented)
-
-
-
-
48
-
-
85038926255
-
-
There is a discrepancy of a factor of two between our result for the normal-fluid fraction in the limit (Formula presented) and the result of Ref. 15. We believe that this is due to a typo in Ref. 15
-
There is a discrepancy of a factor of two between our result for the normal-fluid fraction in the limit (Formula presented) and the result of Ref. 15. We believe that this is due to a typo in Ref. 15.
-
-
-
-
49
-
-
85038947111
-
-
M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996), p. 337.
-
M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996), p. 337.
-
-
-
-
50
-
-
85038959293
-
-
See, for instance, p. 1135 of Ref. 1
-
See, for instance, p. 1135 of Ref. 1.
-
-
-
-
52
-
-
85038971941
-
-
This nonrelativistic approximation we can use the 2D Coulomb gauge rather than the more general Lorentz gauge.
-
In this nonrelativistic approximation we can use the 2D Coulomb gauge rather than the more general Lorentz gauge.
-
-
-
|