-
3
-
-
0000495441
-
-
edited by W. Kaiser Springer-Verlag, Berlin
-
A. Seilmeier and W. Kaiser, in Ultrashort Laser Pulses, Generation and Applications, 2nd ed., edited by W. Kaiser (Springer-Verlag, Berlin, 1993), Vol. 60, p. 279.
-
(1993)
Ultrashort Laser Pulses, Generation and Applications, 2nd Ed.
, vol.60
, pp. 279
-
-
Seilmeier, A.1
Kaiser, W.2
-
7
-
-
0002950355
-
-
referred to the population transfer to energetically close states within kT as solvent-assisted IVR. The solvent origin on vibrational energy redistribution is not involved in the description of IVR in gas phase spectroscopy. While recognizing this distinction, in the present paper, we use the definition generally accepted in the field of liquid state spectroscopy, that is, the intramolecular population transfer to nearly isoenergetic states towards statistical distribution of the excess energy
-
The term of IVR has been used to describe the transfer of energy from prepared initial state to other isoenergetic state in the absence of collisions for isolated molecules in the field of gas phase spectroscopy. In liquid state, unlike gas phase IVR, the modes are far enough apart to be well defined eigenstates in the isolate molecules. In addition, the solvent provides the coupling and energy bath needed to make transitions. For example, Bout et al. [Chem. Phys. Lett. 229, 87 (1994)] referred to the population transfer to energetically close states within kT as solvent-assisted IVR. The solvent origin on vibrational energy redistribution is not involved in the description of IVR in gas phase spectroscopy. While recognizing this distinction, in the present paper, we use the definition generally accepted in the field of liquid state spectroscopy, that is, the intramolecular population transfer to nearly isoenergetic states towards statistical distribution of the excess energy.
-
(1994)
Chem. Phys. Lett.
, vol.229
, pp. 87
-
-
Bout1
-
12
-
-
34047270526
-
-
R. J. Sension, S. T. Repinec, A. Z. Szarka, and R. M. Hochstrasser, J. Chem. Phys. 98, 6291 (1993).
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 6291
-
-
Sension, R.J.1
Repinec, S.T.2
Szarka, A.Z.3
Hochstrasser, R.M.4
-
13
-
-
0000928818
-
-
K. Lenz, M. Preiffer, A. Lau, and T. Elsaesser, Chem. Phys. Lett. 229, 340 (1994).
-
(1994)
Chem. Phys. Lett.
, vol.229
, pp. 340
-
-
Lenz, K.1
Preiffer, M.2
Lau, A.3
Elsaesser, T.4
-
16
-
-
0028531917
-
-
P. Hamm, S. Wiemann, M. Zurek, and W. Zinth, Opt. Lett. 19, 1642 (1994).
-
(1994)
Opt. Lett.
, vol.19
, pp. 1642
-
-
Hamm, P.1
Wiemann, S.2
Zurek, M.3
Zinth, W.4
-
23
-
-
0000039440
-
-
J. Qian, S. L. Schultz, G. R. Bradburn, and J. M. Jean, J. Phys. Chem. 97, 10638 (1993).
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 10638
-
-
Qian, J.1
Schultz, S.L.2
Bradburn, G.R.3
Jean, J.M.4
-
31
-
-
0000740680
-
-
U. Even, J. Magen, J. Jortner, and H. Levanon, J. Am. Chem. Soc. 103, 4583 (1981).
-
(1981)
J. Am. Chem. Soc.
, vol.103
, pp. 4583
-
-
Even, U.1
Magen, J.2
Jortner, J.3
Levanon, H.4
-
32
-
-
36749106745
-
-
U. Even, J. Magen, J. Jortner, and H. Levanon, J. Chem. Phys. 76, 5684 (1982).
-
(1982)
J. Chem. Phys.
, vol.76
, pp. 5684
-
-
Even, U.1
Magen, J.2
Jortner, J.3
Levanon, H.4
-
33
-
-
0000499643
-
-
U. Even, J. Magen, J. Jortner, J. Friedman, and H. Levanon, J. Chem. Phys. 77, 4374 (1982).
-
(1982)
J. Chem. Phys.
, vol.77
, pp. 4374
-
-
Even, U.1
Magen, J.2
Jortner, J.3
Friedman, J.4
Levanon, H.5
-
36
-
-
0023515963
-
-
J. W. Petrich, J. L. Martin, D. Houde, C. Poyart, and A. Orszag, Biochemistry 26, 7914 (1987).
-
(1987)
Biochemistry
, vol.26
, pp. 7914
-
-
Petrich, J.W.1
Martin, J.L.2
Houde, D.3
Poyart, C.4
Orszag, A.5
-
38
-
-
0000293477
-
-
R. Lingle, Jr., X. Xu, H. Zhu, S.-C. Yu, and J. B. Hopkins, J. Am. Chem. Soc. 113, 3992 (1991).
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 3992
-
-
Lingle R., Jr.1
Xu, X.2
Zhu, H.3
Yu, S.-C.4
Hopkins, J.B.5
-
39
-
-
0000410065
-
-
R. Lingle, Jr., X. Xu, H. Zhu, S.-C. Yu, and J. B. Hopkins, J. Phys. Chem. 95, 9320 (1991).
-
(1991)
J. Phys. Chem.
, vol.95
, pp. 9320
-
-
Lingle R., Jr.1
Xu, X.2
Zhu, H.3
Yu, S.-C.4
Hopkins, J.B.5
-
41
-
-
84988168818
-
-
R. G. Alden, M. C. Schneebeck, M. R. Ondrias, S. H. Courtney, and J. M. Friedman, J. Raman Spectrosc. 23, 569 (1992).
-
(1992)
J. Raman Spectrosc.
, vol.23
, pp. 569
-
-
Alden, R.G.1
Schneebeck, M.C.2
Ondrias, M.R.3
Courtney, S.H.4
Friedman, J.M.5
-
43
-
-
0030767879
-
-
M. C. Simpson, E. S. Peterson, C. F. Shannon, D. D. Eads, J. M. Friedman, C. M. Cheatum, and M. R. Ondrias, J. Am. Chem. Soc. 119, 5110 (1997).
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 5110
-
-
Simpson, M.C.1
Peterson, E.S.2
Shannon, C.F.3
Eads, D.D.4
Friedman, J.M.5
Cheatum, C.M.6
Ondrias, M.R.7
-
47
-
-
0003096407
-
-
X.-Y. Li, R. S. Czernucszewicz, J. R. Kincaid, P. Stein, and T. G. Spiro, J. Phys. Chem. 94, 47 (1990).
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 47
-
-
Li, X.-Y.1
Czernucszewicz, R.S.2
Kincaid, J.R.3
Stein, P.4
Spiro, T.G.5
-
48
-
-
33845183059
-
-
X.-Y. Li, R. S. Czernucszewicz, J. R. Kincaid, and T. G. Spiro, J. Am. Chem. Soc. 111, 7012 (1989).
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 7012
-
-
Li, X.-Y.1
Czernucszewicz, R.S.2
Kincaid, J.R.3
Spiro, T.G.4
-
52
-
-
85034125830
-
-
1g NiOEP at 516 nm is much smaller, the percentage of molecules absorbing multi-pump photons is negligible
-
1g NiOEP at 516 nm is much smaller, the percentage of molecules absorbing multi-pump photons is negligible.
-
-
-
-
53
-
-
85034124785
-
-
We adopt the vibrational assignments of NiOEP given by Ref. 47
-
We adopt the vibrational assignments of NiOEP given by Ref. 47.
-
-
-
-
54
-
-
0001314191
-
-
S. H. Courtney, T. M. Jedju, J. M. Friedman, L. Rothberg, R. G. Alden, M. S. Park, and M. R. Ondrias, J. Opt. Soc. Am. B 7, 1610 (1990).
-
(1990)
J. Opt. Soc. Am. b
, vol.7
, pp. 1610
-
-
Courtney, S.H.1
Jedju, T.M.2
Friedman, J.M.3
Rothberg, L.4
Alden, R.G.5
Park, M.S.6
Ondrias, M.R.7
-
55
-
-
85034136383
-
-
note
-
7 bands in the previous report. A discussion whether the results reported there indicated non-Boltzmann vibrational energy dynamics or not was withheld in Ref. 30.
-
-
-
-
60
-
-
0001944731
-
-
V. S. Chirvonyi, B. M. Dzhagarov, Y. V. Timinskii, and G. P. Gurinovich, Chem. Phys. Lett. 70, 79 (1980).
-
(1980)
Chem. Phys. Lett.
, vol.70
, pp. 79
-
-
Chirvonyi, V.S.1
Dzhagarov, B.M.2
Timinskii, Y.V.3
Gurinovich, G.P.4
-
61
-
-
0000600357
-
-
R. G. Alden, B. A. Crawford, R. Doolen, M. R. Ondrias, and J. A. Shelnutt, J. Am. Chem. Soc. 111, 2070 (1989).
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 2070
-
-
Alden, R.G.1
Crawford, B.A.2
Doolen, R.3
Ondrias, M.R.4
Shelnutt, J.A.5
-
64
-
-
0016691711
-
-
L. D. Spaulding, C. C. Chang, N.-T. Yu, and R. H. Felton, J. Am. Chem. Soc. 97, 2517 (1975).
-
(1975)
J. Am. Chem. Soc.
, vol.97
, pp. 2517
-
-
Spaulding, L.D.1
Chang, C.C.2
Yu, N.-T.3
Felton, R.H.4
-
66
-
-
2842546487
-
-
S. Choi, T. G. Spiro, K. C. Langry, K. M. Smith, D. L. Budd, and G. N. La Mar, J. Am. Chem. Soc. 104, 4345 (1982).
-
(1982)
J. Am. Chem. Soc.
, vol.104
, pp. 4345
-
-
Choi, S.1
Spiro, T.G.2
Langry, K.C.3
Smith, K.M.4
Budd, D.L.5
La Mar, G.N.6
-
67
-
-
0001600188
-
-
W. A. Oertling, A. Salehi, Y. C. Chung, G. E. Leroi, C. K. Chang, and G. T. Babcock, J. Phys. Chem. 91, 5887 (1987).
-
(1987)
J. Phys. Chem.
, vol.91
, pp. 5887
-
-
Oertling, W.A.1
Salehi, A.2
Chung, Y.C.3
Leroi, G.E.4
Chang, C.K.5
Babcock, G.T.6
-
69
-
-
2942735780
-
-
S. G. Kruglik, P. A. Apanasevich, V. S. Chirvony, V. V. Kvach, and V. A. Orlovich, J. Phys. Chem. 99, 2978 (1995).
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 2978
-
-
Kruglik, S.G.1
Apanasevich, P.A.2
Chirvony, V.S.3
Kvach, V.V.4
Orlovich, V.A.5
-
70
-
-
0002290059
-
-
A. Y. Chikishev, V. F. Kamalov, N. I. Koroteev, V. V. Kvach, A. P. Shkurinov, and B. N. Toleutaev, Chem. Phys. Lett. 144, 90 (1988).
-
(1988)
Chem. Phys. Lett.
, vol.144
, pp. 90
-
-
Chikishev, A.Y.1
Kamalov, V.F.2
Koroteev, N.I.3
Kvach, V.V.4
Shkurinov, A.P.5
Toleutaev, B.N.6
-
75
-
-
0001176139
-
-
U. Sukowski, A. Seilmeier, T. Elsaesser, and S. F. Fisher, J. Chem. Phys. 93, 4094 (1990).
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 4094
-
-
Sukowski, U.1
Seilmeier, A.2
Elsaesser, T.3
Fisher, S.F.4
-
79
-
-
85034124012
-
-
7 band. The temperature of 1500 K is much higher than the temperature that is calculated under the assumption that the excess energy is partitioned among all modes equally as a result of complete IVR (670 K)
-
7 band. The temperature of 1500 K is much higher than the temperature that is calculated under the assumption that the excess energy is partitioned among all modes equally as a result of complete IVR (670 K).
-
-
-
-
80
-
-
4243205949
-
-
i/kT) in a good approximation. The system, therefore, can be characterized by high "temperature" if the total energy is statistically redistributed over a very large number of isoenergetic states (microcanonical distribution). Kaiser and co-workers called this "internal temperature"
-
i/kT) in a good approximation. The system, therefore, can be characterized by high "temperature" if the total energy is statistically redistributed over a very large number of isoenergetic states (microcanonical distribution). Kaiser and co-workers called this "internal temperature" [Chem. Phys. Lett. 111, 326 (1984)].
-
(1984)
Chem. Phys. Lett.
, vol.111
, pp. 326
-
-
-
83
-
-
0001085949
-
-
W. Wild, A. Seilmeier, N. H. Gottfried, and W. Kaiser, Chem. Phys. Lett. 119, 259 (1985).
-
(1985)
Chem. Phys. Lett.
, vol.119
, pp. 259
-
-
Wild, W.1
Seilmeier, A.2
Gottfried, N.H.3
Kaiser, W.4
-
88
-
-
0000143948
-
-
R. E. Hester, P. Matousek, J. N. Moore, A. W. Parker, W. T. Toner, and M. Towrie, Chem. Phys. Lett. 208, 471 (1993).
-
(1993)
Chem. Phys. Lett.
, vol.208
, pp. 471
-
-
Hester, R.E.1
Matousek, P.2
Moore, J.N.3
Parker, A.W.4
Toner, W.T.5
Towrie, M.6
|