-
1
-
-
0003808029
-
-
Gauthier-Villars, Paris, Albert Blanchard, Paris
-
H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Vol. III (Gauthier-Villars, Paris, 1892; Albert Blanchard, Paris, 1987); New Methods of Celestial Mechanics, Vol. III (Dover, New York, 1957).
-
(1892)
Les Méthodes Nouvelles De La Mécanique Céleste
, vol.3
-
-
-
2
-
-
0003909276
-
-
Dover, New York
-
H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Vol. III (Gauthier-Villars, Paris, 1892; Albert Blanchard, Paris, 1987); New Methods of Celestial Mechanics, Vol. III (Dover, New York, 1957).
-
(1957)
New Methods of Celestial Mechanics
, vol.3
-
-
-
3
-
-
6244237058
-
-
M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967); 10, 1004 (1969); 11, 1791 (1970); 12, 343 (1971).
-
(1967)
J. Math. Phys.
, vol.8
, pp. 1979
-
-
Gutzwiller, M.C.1
-
4
-
-
18044380772
-
-
M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967); 10, 1004 (1969); 11, 1791 (1970); 12, 343 (1971).
-
(1969)
J. Math. Phys.
, vol.10
, pp. 1004
-
-
-
5
-
-
5344241014
-
-
M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967); 10, 1004 (1969); 11, 1791 (1970); 12, 343 (1971).
-
(1970)
J. Math. Phys.
, vol.11
, pp. 1791
-
-
-
6
-
-
0001397592
-
-
M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967); 10, 1004 (1969); 11, 1791 (1970); 12, 343 (1971).
-
(1971)
J. Math. Phys.
, vol.12
, pp. 343
-
-
-
7
-
-
0003255969
-
Chaos in Classical and Quantum Mechanics
-
Springer, New York
-
M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Interdisciplinary Applied Mathematics Vol. 1 (Springer, New York, 1991).
-
(1991)
Interdisciplinary Applied Mathematics
, vol.1
-
-
Gutzwiller, M.C.1
-
8
-
-
35949009406
-
-
M. L. Du and J. B. Delos, Phys. Rev. Lett. 58, 1731 (1987); Phys. Rev. A 38, 1896 (1988); 38, 1913 (1988).
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 1731
-
-
Du, M.L.1
Delos, J.B.2
-
9
-
-
18344372861
-
-
M. L. Du and J. B. Delos, Phys. Rev. Lett. 58, 1731 (1987); Phys. Rev. A 38, 1896 (1988); 38, 1913 (1988).
-
(1988)
Phys. Rev. A
, vol.38
, pp. 1896
-
-
-
10
-
-
24244464830
-
-
M. L. Du and J. B. Delos, Phys. Rev. Lett. 58, 1731 (1987); Phys. Rev. A 38, 1896 (1988); 38, 1913 (1988).
-
(1988)
Phys. Rev. A
, vol.38
, pp. 1913
-
-
-
11
-
-
0000771701
-
-
D. Wintgen, Phys. Rev. Lett. 58, 1589 (1987); D. Wintgen and H. Friedrich, Phys. Rev. A 36, 131 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 1589
-
-
Wintgen, D.1
-
15
-
-
35949007048
-
-
J. Main, G. Wiebusch, K. Welge, J. Shaw, and J. B. Delos, Phys. Rev. A 49, 847 (1994).
-
(1994)
Phys. Rev. A
, vol.49
, pp. 847
-
-
Main, J.1
Wiebusch, G.2
Welge, K.3
Shaw, J.4
Delos, J.B.5
-
16
-
-
84966219641
-
-
K. R. Meyer, Trans. Am. Math. Soc. 149, 95 (1970); 154, 273 (1971). See also K. R. Meyer, in Multiparameter Bifurcation Theory, Contemporary Mathematics Series Vol. 56, edited by M. Golubitsky and J. Guckenheimer (American Mathematical Society, Providence, RI, 1986), p. 373.
-
(1970)
Trans. Am. Math. Soc.
, vol.149
, pp. 95
-
-
Meyer, K.R.1
-
17
-
-
20444390483
-
-
K. R. Meyer, Trans. Am. Math. Soc. 149, 95 (1970); 154, 273 (1971). See also K. R. Meyer, in Multiparameter Bifurcation Theory, Contemporary Mathematics Series Vol. 56, edited by M. Golubitsky and J. Guckenheimer (American Mathematical Society, Providence, RI, 1986), p. 373.
-
(1971)
Trans. Am. Math. Soc.
, vol.154
, pp. 273
-
-
-
18
-
-
84966219641
-
-
Multiparameter Bifurcation Theory, edited by M. Golubitsky and J. Guckenheimer American Mathematical Society, Providence, RI
-
K. R. Meyer, Trans. Am. Math. Soc. 149, 95 (1970); 154, 273 (1971). See also K. R. Meyer, in Multiparameter Bifurcation Theory, Contemporary Mathematics Series Vol. 56, edited by M. Golubitsky and J. Guckenheimer (American Mathematical Society, Providence, RI, 1986), p. 373.
-
(1986)
Contemporary Mathematics Series
, vol.56
, pp. 373
-
-
Meyer, K.R.1
-
20
-
-
85085781868
-
-
Ph.D. thesis, College of William & Mary
-
2-symmetric bifurcation of the perpendicular orbit is organized in the fashion similar to the k = 4 and 6 cases [6].
-
(1993)
-
-
Shaw, J.1
-
21
-
-
0007668179
-
-
An extension of the generic theory [16] to symmetric systems was given by M. A. M. de Aguiar, C. P. Malta, M. Baranger, and K. T. R. Davies, Ann. Phys. (N.Y.) 180, 167 (1987); M. A. M. de Aguiar and C. P. Malta, Physica D 30, 413 (1988).
-
(1987)
Ann. Phys. (N.Y.)
, vol.180
, pp. 167
-
-
De Aguiar, M.A.M.1
Malta, C.P.2
Baranger, M.3
Davies, K.T.R.4
-
22
-
-
0007251024
-
-
An extension of the generic theory [16] to symmetric systems was given by M. A. M. de Aguiar, C. P. Malta, M. Baranger, and K. T. R. Davies, Ann. Phys. (N.Y.) 180, 167 (1987); M. A. M. de Aguiar and C. P. Malta, Physica D 30, 413 (1988).
-
(1988)
Physica D
, vol.30
, pp. 413
-
-
De Aguiar, M.A.M.1
Malta, C.P.2
-
24
-
-
0004223966
-
-
American Mathematical Society, New York
-
G. D. Birkhoff, Dynamical Systems (American Mathematical Society, New York, 1966).
-
(1966)
Dynamical Systems
-
-
Birkhoff, G.D.1
-
25
-
-
0000717287
-
-
A. Deprit, Celest. Mech. 1, 12 (1969); J. Henrard, ibid. 3, 107 (1970).
-
(1969)
Celest. Mech.
, vol.1
, pp. 12
-
-
Deprit, A.1
-
26
-
-
0000268829
-
-
A. Deprit, Celest. Mech. 1, 12 (1969); J. Henrard, ibid. 3, 107 (1970).
-
(1970)
Celest. Mech.
, vol.3
, pp. 107
-
-
Henrard, J.1
-
27
-
-
0003221080
-
Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
-
Springer, New York
-
K. R. Meyer and G. R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematics Series Vol. 90 (Springer, New York, 1992).
-
(1992)
Applied Mathematics Series
, vol.90
-
-
Meyer, K.R.1
Hall, G.R.2
-
28
-
-
0003366862
-
Geometrical Methods of the Theory of Ordinary Differential Equations
-
translated by J. Szücs, English translation edited by M. Levi, Springer, New York
-
Vl. I. Arnol'd, Geometrical Methods of the Theory of Ordinary Differential Equations, translated by J. Szücs, English translation edited by M. Levi, Series of Comprehensive Studies in Mathematics Vol. 250 (Springer, New York, 1988). Original Russian edition: Dopolnitel'nye Glavy Teorii Obyknovennyk̂h Different̂sial'nyk̂h Uravnenií (Nauka, Moscow, 1978).
-
(1988)
Series of Comprehensive Studies in Mathematics
, vol.250
-
-
Arnol'd, Vl.I.1
-
29
-
-
0004171747
-
-
Original Russian edition: Nauka, Moscow
-
Vl. I. Arnol'd, Geometrical Methods of the Theory of Ordinary Differential Equations, translated by J. Szücs, English translation edited by M. Levi, Series of Comprehensive Studies in Mathematics Vol. 250 (Springer, New York, 1988). Original Russian edition: Dopolnitel'nye Glavy Teorii Obyknovennyk̂h Different̂sial'nyk̂h Uravnenií (Nauka, Moscow, 1978).
-
(1978)
Dopolnitel'nye Glavy Teorii Obyknovennyk̂h Different̂sial'nyk̂h Uravnenií
-
-
-
31
-
-
5544307538
-
-
note
-
In mathematics the term "generic" has a precise meaning. A generic subset of an appropriately defined set (of functions, mappings, etc.) has two important properties: it must be open and everywhere dense. These properties are closely related to structural stability; see Refs. [17], Chap. 3, [16], Chaps. VI-IIA, p. 202, and [54]. For example, integrable systems are structurally unstable in the set of all dynamical systems [1,14], because an infinitely small perturbation typically destroys integrability; these systems are also not dense, and hence they cannot be used to approximate all possible dynamic regimes.
-
-
-
-
32
-
-
5544271597
-
-
The name comes from the pitchforklike bifurcation diagram in the parameter space
-
The name comes from the pitchforklike bifurcation diagram in the parameter space.
-
-
-
-
33
-
-
5544311324
-
-
See also Table I, footnote (c) and remarks of de Aguiar et al. (Ref. [12]), pp. 188 and 200
-
K. Meyer told us about a number of instances where similar phenomena were observed. He stressed that these phenomena are not generic in the one-parameter theory. See also Table I, footnote (c) and remarks of de Aguiar et al. (Ref. [12]), pp. 188 and 200.
-
-
-
-
34
-
-
0000304848
-
-
B. I. Ẑhilinskií and I. M. Pavliĉhenkov, Zh. Eksp. Teor. Fiz. 92, 387 (1987) [Sov. Phys. JETP 65, 221 (1987)]; Ann. Phys. (N.Y.) 184, 1 (1988). For a general concise discussion see B. I. Ẑhilinskií, Teoriŷa Sloẑhnyk̂h Molekulŷarnyk̂h Spektrov (Moscow University Press, Moscow, 1989), Appendix 2 (in Russian) (English title: Theory of Complex Molecular Spectra).
-
(1987)
Zh. Eksp. Teor. Fiz.
, vol.92
, pp. 387
-
-
Ẑhilinskií, B.I.1
Pavliĉhenkov, I.M.2
-
35
-
-
4243129920
-
-
B. I. Ẑhilinskií and I. M. Pavliĉhenkov, Zh. Eksp. Teor. Fiz. 92, 387 (1987) [Sov. Phys. JETP 65, 221 (1987)]; Ann. Phys. (N.Y.) 184, 1 (1988). For a general concise discussion see B. I. Ẑhilinskií, Teoriŷa Sloẑhnyk̂h Molekulŷarnyk̂h Spektrov (Moscow University Press, Moscow, 1989), Appendix 2 (in Russian) (English title: Theory of Complex Molecular Spectra).
-
(1987)
Sov. Phys. JETP
, vol.65
, pp. 221
-
-
-
36
-
-
0043003813
-
-
B. I. Ẑhilinskií and I. M. Pavliĉhenkov, Zh. Eksp. Teor. Fiz. 92, 387 (1987) [Sov. Phys. JETP 65, 221 (1987)]; Ann. Phys. (N.Y.) 184, 1 (1988). For a general concise discussion see B. I. Ẑhilinskií, Teoriŷa Sloẑhnyk̂h Molekulŷarnyk̂h Spektrov (Moscow University Press, Moscow, 1989), Appendix 2 (in Russian) (English title: Theory of Complex Molecular Spectra).
-
(1988)
Ann. Phys. (N.Y.)
, vol.184
, pp. 1
-
-
-
37
-
-
0011495701
-
-
Teoriŷa Sloẑhnyk̂h Molekulŷarnyk̂h Spektrov Moscow University Press, Moscow, Appendix 2 (in Russian)
-
B. I. Ẑhilinskií and I. M. Pavliĉhenkov, Zh. Eksp. Teor. Fiz. 92, 387 (1987) [Sov. Phys. JETP 65, 221 (1987)]; Ann. Phys. (N.Y.) 184, 1 (1988). For a general concise discussion see B. I. Ẑhilinskií, Teoriŷa Sloẑhnyk̂h Molekulŷarnyk̂h Spektrov (Moscow University Press, Moscow, 1989), Appendix 2 (in Russian) (English title: Theory of Complex Molecular Spectra).
-
(1989)
Theory of Complex Molecular Spectra
-
-
Ẑhilinskií, B.I.1
-
38
-
-
5544273563
-
-
note
-
k are not symplectic and thus should not be considered in the Hamiltonian case (cf. Appendix A).
-
-
-
-
39
-
-
5544287658
-
-
note
-
crit only one transversal mode with eigenvalues λ can be in such a resonance. It follows that λ's are purely imaginary: λ=exp(±i2πn/k). Therefore, in this paper we only consider situations (7a) and (7b).
-
-
-
-
40
-
-
5544230495
-
-
note
-
A classical example of such generic parametrization is the Mathieu-Hill equation, where any of the two roots of ω(ε) = 0 are separated by finite intervals (Lyapunov's oscillation theorem (Ref. [37], Sec. 2.1)).
-
-
-
-
41
-
-
5544298485
-
-
note
-
ε of matrices, whose multipliers are of type (7a) [24], can have at most one degenerate pair (7b) ([17], Chap. 6, Sec. 30E). However, in a generic one-parameter family of N×N Hamiltonian matrices, another case can arise: there may be irreducible 4×4 blocks. We consider only the 2×2 case [24].
-
-
-
-
42
-
-
85085782350
-
-
note
-
1,2 would have to be used.
-
-
-
-
43
-
-
0043003813
-
-
The idea of Ẑhilinskií and Pavliĉhenkov [22] is to classify bifurcations of the fixed points (equilibria) of generic one-degree-of-freedom Hamiltonians with possible a priori symmetries, and to study quantum and classical manifestations of these bifurcations. Their initial work [Ann. Phys. (N.Y.) 184, 1 (1988)] from where we cite our Table I deals with molecular rotation separated from vibration and electronic motion due to the Born-Oppenheimer principle; separation of vibrational modes of a molecule can be approximately achieved near the equilibrium configuration where the perturbation technique is valid [55]. In both cases symmetry enters as the a priori symmetry of the (equilibrium configuration of the) molecule. More generally this subject is discussed in [56]. As follows from our paper the range of applications of this theory is significantly broader.
-
(1988)
Ann. Phys. (N.Y.)
, vol.184
, pp. 1
-
-
-
44
-
-
0003978095
-
-
translated by K. Vogtmann and A. Weinstein Springer, New York
-
Vl. I. Arnol'd, Mathematical Methods of Classical Mechanics, translated by K. Vogtmann and A. Weinstein (Springer, New York, 1989). Original Russian edition: Matematiĉheskie Melody Klassiĉheskoí Mek̂haniki (Nauka, Moscow, 1974).
-
(1989)
Mathematical Methods of Classical Mechanics
-
-
Arnol'd, Vl.I.1
-
45
-
-
0004009937
-
-
Original Russian edition: Nauka, Moscow
-
Vl. I. Arnol'd, Mathematical Methods of Classical Mechanics, translated by K. Vogtmann and A. Weinstein (Springer, New York, 1989). Original Russian edition: Matematiĉheskie Melody Klassiĉheskoí Mek̂haniki (Nauka, Moscow, 1974).
-
(1974)
Matematiĉheskie Melody Klassiĉheskoí Mek̂haniki
-
-
-
46
-
-
85085782841
-
-
note
-
2) = zz̄ must be replaced by 2izz̄, and then that factor carries through everywhere. This brings complex and symplectic structures into agreement.
-
-
-
-
47
-
-
0039669328
-
-
This "trick" has been suggested to us by K. Meyer [see K. R. Meyer and D. S. Schmidt, Funkcialaj Ekvacioj 20, 171 (1977), Eq. (3.16)]; cf. G. E. O. Giacaglia, Perturbation Methods in Nonlinear Systems, Applied Mathematics Sciences Vol. 8 (Springer, New York, 1972), Chap. 11.8.
-
(1977)
Funkcialaj Ekvacioj
, vol.20
, pp. 171
-
-
Meyer, K.R.1
Schmidt, D.S.2
-
48
-
-
0040228607
-
Perturbation Methods in Nonlinear Systems
-
Springer, New York, Chap. 11.8
-
This "trick" has been suggested to us by K. Meyer [see K. R. Meyer and D. S. Schmidt, Funkcialaj Ekvacioj 20, 171 (1977), Eq. (3.16)]; cf. G. E. O. Giacaglia, Perturbation Methods in Nonlinear Systems, Applied Mathematics Sciences Vol. 8 (Springer, New York, 1972), Chap. 11.8.
-
(1972)
Applied Mathematics Sciences
, vol.8
-
-
Giacaglia, G.E.O.1
-
49
-
-
5544302440
-
-
note
-
One common definition is worth remembering. By symmetry of a (Hamilton) function we understand the invariance of this function with respect to certain transformation of coordinates g; when we say that a map or flow is symmetric we mean that this map or flow, itself a transformation, commutes with g.
-
-
-
-
50
-
-
0003318097
-
Mathematical Aspects of Classical and Celestial Mechanics
-
Springer, New York
-
Vl. I. Arnol'd, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Dynamical Systems III, Encyclopedia of Mathematical Sciences Vol. 3 (Springer, New York, 1988).
-
(1988)
Dynamical Systems III, Encyclopedia of Mathematical Sciences
, vol.3
-
-
Arnol'd, Vl.I.1
Kozlov, V.V.2
Neishtadt, A.I.3
-
51
-
-
5544282695
-
-
note
-
σ,σ) space] to suffice (14c) as well as curvature constraint (B2d), so that by the implicit function theorem we can always rewrite Eq. (14a) as Eq. (14b).
-
-
-
-
52
-
-
5544281134
-
-
note
-
Projections of periodic orbits on the configuration space can be qualitatively different. If the configuration-space image of an orbit is a closed curve (that possibly crosses itself) we call such orbit "circular." The image of a "degenerate" orbit degenerates into a line. A circular orbit runs in one distinct direction along its configuration-space image; it shares this image with another orbit running in the opposite direction. Therefore, circular orbits are not invariant with respect to reversing time. A circular orbit does not touch the border of the classically allowed domain of the configuration space. A degenerate orbit arrives at this border at the right angle, turns, and retraces itself. Since degenerate orbits run along their images in both directions they are time-reversal invariant.
-
-
-
-
53
-
-
0004245694
-
-
GPO, Washington, DC, Chap. 20
-
Handbook of Mathematical Functions, edited by M. Abramowitz and I. Stegun (GPO, Washington, DC, 1972), Chap. 20.
-
(1972)
Handbook of Mathematical Functions
-
-
Abramowitz, M.1
Stegun, I.2
-
55
-
-
85085782052
-
-
note
-
2 whose multipliers are positive.
-
-
-
-
56
-
-
5544277930
-
-
note
-
It is interesting to apply the theory of foliations of three-dimensional constant energy level sets of integrable systems in Refs. [48], Pt. III and [57], Chap. 4.1 to the problem of topology of the reduced phase space near the periodic orbit. For a stable central orbit the local normal form in Eq. (69b) defines the set of tori characterized by action I of the motion normal to the orbit. (Another representation is a "filled torus.") In other words I is the (local) Bott integral for Liouville tori. See also Sec. VII B 2.
-
-
-
-
58
-
-
85085782041
-
-
0
-
0.
-
-
-
-
59
-
-
85085781382
-
-
note
-
j's in (52d) that correspond to the auxiliary eigenvalues λ= ±i (cf. Sec. VII A 5).
-
-
-
-
60
-
-
85085781809
-
-
note
-
λ}.] Interestingly, the use of the term orbit in both cases has essentially the same idea.
-
-
-
-
62
-
-
0005819815
-
-
M. Robnik, J. Phys. A 14, 3195 (1981); M. Robnik and E. Schrüfer, ibid. 18. L853 (1985).
-
(1981)
J. Phys. A
, vol.14
, pp. 3195
-
-
Robnik, M.1
-
64
-
-
0043161218
-
-
K. D. Krantzman and D. Farrelly, Phys. Rev. A 43, 1666 (1991); K. D. Krantzman, J. A. Milligan, and D. Farrelly, ibid. 45, 3093 (1992).
-
(1991)
Phys. Rev. A
, vol.43
, pp. 1666
-
-
Krantzman, K.D.1
Farrelly, D.2
-
65
-
-
0043161231
-
-
K. D. Krantzman and D. Farrelly, Phys. Rev. A 43, 1666 (1991); K. D. Krantzman, J. A. Milligan, and D. Farrelly, ibid. 45, 3093 (1992).
-
(1992)
Ibid.
, vol.45
, pp. 3093
-
-
Krantzman, K.D.1
Milligan, J.A.2
Farrelly, D.3
-
66
-
-
0042660249
-
-
M. W. Beims and G. Alber, Phys. Rev. A 48, 3123 (1993); J. Gao and J. B. Delos, Phys. Rev. A 49, 869 (1994).
-
(1993)
Phys. Rev. A
, vol.48
, pp. 3123
-
-
Beims, M.W.1
Alber, G.2
-
67
-
-
5244221282
-
-
M. W. Beims and G. Alber, Phys. Rev. A 48, 3123 (1993); J. Gao and J. B. Delos, Phys. Rev. A 49, 869 (1994).
-
(1994)
Phys. Rev. A
, vol.49
, pp. 869
-
-
Gao, J.1
Delos, J.B.2
-
68
-
-
0003579673
-
Modern Geometry-Methods and Applications
-
translated by R. G. Burns, Springer, New York
-
B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry-Methods and Applications, translated by R. G. Burns, Springer Series in Soviet Mathematics, Graduate Texts in Mathematics Vol. 93 (Springer, New York, 1984). Original Russian edition: Sovremennaŷa Geomeiriŷa: Metody i Priloẑheniŷa (Nauka, Moscow, 1979).
-
(1984)
Springer Series in Soviet Mathematics, Graduate Texts in Mathematics
, vol.93
-
-
Dubrovin, B.A.1
Fomenko, A.T.2
Novikov, S.P.3
-
69
-
-
34547125219
-
-
Original Russian edition: Nauka, Moscow
-
B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry-Methods and Applications, translated by R. G. Burns, Springer Series in Soviet Mathematics, Graduate Texts in Mathematics Vol. 93 (Springer, New York, 1984). Original Russian edition: Sovremennaŷa Geomeiriŷa: Metody i Priloẑheniŷa (Nauka, Moscow, 1979).
-
(1979)
Sovremennaŷa Geomeiriŷa: Metody I Priloẑheniŷa
-
-
-
73
-
-
5544261941
-
-
note
-
Even though the topology of the original DKP phase space is quite different from the topology of the (u,v) [or (ρ,z)] representation, we can make the (u,v) dynamics equivalent to that in the original DKP using special Maslov indices: whenever the electron passes through u or u axes the Maslov index increases by 1 [7].
-
-
-
-
74
-
-
0003854525
-
Linear and Regular Celestial Mechanics
-
Springer, Berlin, and Ref. [46]
-
Alternatively, the Coulomb singularity can be removed by full 3D KS transformation, see E. L. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics, Ser. Grundlehren der mathematischen Wissenschaften (Foundations of Mathematical Sciences] Vol. 174 (Springer, Berlin, 1970), and Ref. [46].
-
(1970)
Ser. Grundlehren Der Mathematischen Wissenschaften Foundations of Mathematical Sciences]
, vol.174
-
-
Stiefel, E.L.1
Scheifele, G.2
-
75
-
-
36749109069
-
-
Ch. Cerjan and W. P. Reinhardt, J. Chem. Phys. 71, 1819 (1979); W. P. Reinhardt and D. Farrelly, J. Phys. (Paris), Colloq. 43, C2-29 (1982); C. Jaffé and W. P. Reinhardt, J. Chem. Phys. 77, 5191 (1982).
-
(1979)
J. Chem. Phys.
, vol.71
, pp. 1819
-
-
Cerjan, Ch.1
Reinhardt, W.P.2
-
76
-
-
0020205269
-
-
Ch. Cerjan and W. P. Reinhardt, J. Chem. Phys. 71, 1819 (1979); W. P. Reinhardt and D. Farrelly, J. Phys. (Paris), Colloq. 43, C2-29 (1982); C. Jaffé and W. P. Reinhardt, J. Chem. Phys. 77, 5191 (1982).
-
(1982)
J. Phys. (Paris), Colloq.
, vol.43
-
-
Reinhardt, W.P.1
Farrelly, D.2
-
77
-
-
0042974379
-
-
Ch. Cerjan and W. P. Reinhardt, J. Chem. Phys. 71, 1819 (1979); W. P. Reinhardt and D. Farrelly, J. Phys. (Paris), Colloq. 43, C2-29 (1982); C. Jaffé and W. P. Reinhardt, J. Chem. Phys. 77, 5191 (1982).
-
(1982)
J. Chem. Phys.
, vol.77
, pp. 5191
-
-
Jaffé, C.1
Reinhardt, W.P.2
-
78
-
-
0003428398
-
-
Pitman, London
-
T. Poston and I. Stewart, Catastrophe Theory and its Applications (Pitman, London, 1978); R. Gilmore, Catastrophe Theory for Scientists and Engineers (Wiley, New York, 1981); Vl. I. Arnol'd, Catastrophe Theory, translated by R. Thomas (Springer, New York, 1984).
-
(1978)
Catastrophe Theory and Its Applications
-
-
Poston, T.1
Stewart, I.2
-
79
-
-
0004004056
-
-
Wiley, New York
-
T. Poston and I. Stewart, Catastrophe Theory and its Applications (Pitman, London, 1978); R. Gilmore, Catastrophe Theory for Scientists and Engineers (Wiley, New York, 1981); Vl. I. Arnol'd, Catastrophe Theory, translated by R. Thomas (Springer, New York, 1984).
-
(1981)
Catastrophe Theory for Scientists and Engineers
-
-
Gilmore, R.1
-
80
-
-
0004279024
-
-
translated by R. Thomas Springer, New York
-
T. Poston and I. Stewart, Catastrophe Theory and its Applications (Pitman, London, 1978); R. Gilmore, Catastrophe Theory for Scientists and Engineers (Wiley, New York, 1981); Vl. I. Arnol'd, Catastrophe Theory, translated by R. Thomas (Springer, New York, 1984).
-
(1984)
Catastrophe Theory
-
-
Arnol'd, Vl.I.1
-
81
-
-
36449001340
-
-
D. A. Sadpvskií, N. G. Fulton, J. R. Henderson, J. Tennyson, and B. I. Zhilinskii, J. Chem. Phys. 99, 906 (1993).
-
(1993)
J. Chem. Phys.
, vol.99
, pp. 906
-
-
Sadpvskií, D.A.1
Fulton, N.G.2
Henderson, J.R.3
Tennyson, J.4
Zhilinskii, B.I.5
-
83
-
-
11744364660
-
-
D. A. Sadovskií and B. I. Ẑhilinskií, Phys. Rev. A 47, 2653 (1993); 48, 1035 (1993).
-
(1993)
Phys. Rev. A
, vol.48
, pp. 1035
-
-
|