-
2
-
-
0000843969
-
-
J. J. Finley, M. Skalitz, M. Arzberger, A. Zrenner, G. Böhm, and G. Abstreiter, Appl. Phys. Lett. 73, 2618 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 2618
-
-
Finley, J.J.1
Skalitz, M.2
Arzberger, M.3
Zrenner, A.4
Böhm, G.5
Abstreiter, G.6
-
3
-
-
0000556220
-
-
R. Heitz, M. Veit, N. N. Ledenstov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop'ev, and Zh. I. Alferov, Phys. Rev. B 56, 10435 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 10435
-
-
Heitz, R.1
Veit, M.2
Ledenstov, N.N.3
Hoffmann, A.4
Bimberg, D.5
Ustinov, V.M.6
Kop'ev, P.S.7
Alferov, Zh.I.8
-
4
-
-
0001937527
-
-
A. V. Uskov, J. McInerny, F. Adler, H. Sweizer, and M. H. Pilkuhn, Appl. Phys. Lett. 72, 58 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.72
, pp. 58
-
-
Uskov, A.V.1
McInerny, J.2
Adler, F.3
Sweizer, H.4
Pilkuhn, M.H.5
-
6
-
-
0001641998
-
-
B. Ohnesorge, M. Albrecht, J. Oshinawa, A. Forchel, and Y. Arakawa, Phys. Rev. B 54, 11532 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11532
-
-
Ohnesorge, B.1
Albrecht, M.2
Oshinawa, J.3
Forchel, A.4
Arakawa, Y.5
-
7
-
-
0000200645
-
-
C. M. A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, P. N. Brounkov, B. V. Volovik, S. G. Konnikov, A. R. Kovsh, and V. M. Ustinov, Appl. Phys. Lett. 76, 1573 (2000).
-
(2000)
Appl. Phys. Lett.
, vol.76
, pp. 1573
-
-
Kapteyn, C.M.A.1
Lion, M.2
Heitz, R.3
Bimberg, D.4
Brounkov, P.N.5
Volovik, B.V.6
Konnikov, S.G.7
Kovsh, A.R.8
Ustinov, V.M.9
-
8
-
-
0000194066
-
-
C. M. A. Kapteyn, P. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, N. D. Zakharov, D. Bimberg, and P. Werner, Phys. Rev. B 60, 14265 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 14265
-
-
Kapteyn, C.M.A.1
Heinrichsdorff, P.2
Stier, O.3
Heitz, R.4
Grundmann, M.5
Zakharov, N.D.6
Bimberg, D.7
Werner, P.8
-
10
-
-
0006276608
-
-
Amsterdam
-
K. H. Schmidt, U. Kunze, G. Medeiros-Ribeiro, J. M. Garcia, P. Wellmann, and P. M. Petroff, Physica E (Amsterdam) 2, 627 (1998).
-
(1998)
Physica E
, vol.2
, pp. 627
-
-
Schmidt, K.H.1
Kunze, U.2
Medeiros-Ribeiro, G.3
Garcia, J.M.4
Wellmann, P.5
Petroff, P.M.6
-
12
-
-
0001641999
-
-
M. J. Steer, D. J. Mowbray, W. R. Tribe, M. S. Skolnick, M. D. Sturge, M. Hopkinson, A. G. Cullis, C. R. Whitehouse, and R. Murray, Phys. Rev. B 54, 17738 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 17738
-
-
Steer, M.J.1
Mowbray, D.J.2
Tribe, W.R.3
Skolnick, M.S.4
Sturge, M.D.5
Hopkinson, M.6
Cullis, A.G.7
Whitehouse, C.R.8
Murray, R.9
-
13
-
-
0001391825
-
-
see reference therein to three-dimensional tunneling rate calculations for QDs; the results agree within a factor of 3 with those obtained from ID quantum-well calculations, justifying the approach adopted here
-
D. M.-T. Kuo and Y. C. Chang, Phys. Rev. B 61, 11051 (2000): see reference therein to three-dimensional tunneling rate calculations for QDs; the results agree within a factor of 3 with those obtained from ID quantum-well calculations, justifying the approach adopted here.
-
(2000)
Phys. Rev. B
, vol.61
, pp. 11051
-
-
Kuo, D.M.-T.1
Chang, Y.C.2
-
14
-
-
85037505770
-
-
The electron tunneling rate is 5-10 orders of magnitude faster than that of holes due to the 5-7 times smaller electron mass, see. e.g., Ref. 2. Tunneling is thus initiated by electrons and, therefore, employed in the calculations. Hole space charge builds up until the electron and hole fluxes out of the dots are equal. The space-charge buildup is, nevertheless, small and does not effect the electrostatics, as verified by power-dependent measurements
-
The electron tunneling rate is 5-10 orders of magnitude faster than that of holes due to the 5-7 times smaller electron mass, see. e.g., Ref. 2. Tunneling is thus initiated by electrons and, therefore, employed in the calculations. Hole space charge builds up until the electron and hole fluxes out of the dots are equal. The space-charge buildup is, nevertheless, small and does not effect the electrostatics, as verified by power-dependent measurements.
-
-
-
-
15
-
-
85037499967
-
-
e
-
e.
-
-
-
-
16
-
-
85037521675
-
-
A Gaussian centered at 190 meV is used width of 25 meV, approximately half the linewidth of the PC/PL. We assume the broadening is split equally between electron and hole fluctuations
-
A Gaussian centered at 190 meV is used width of 25 meV, approximately half the linewidth of the PC/PL. We assume the broadening is split equally between electron and hole fluctuations.
-
-
-
-
17
-
-
85037502251
-
-
Resonant PL was performed at several other excitation energies (1.22-1.30 eV) and while the spectra became increasingly dominated by LOphonon replicas as the excitation energy was reduced (see Ref. 12). the field dependence of the ground-state PL intensity remained the same
-
Resonant PL was performed at several other excitation energies (1.22-1.30 eV) and while the spectra became increasingly dominated by LOphonon replicas as the excitation energy was reduced (see Ref. 12). the field dependence of the ground-state PL intensity remained the same.
-
-
-
-
18
-
-
85037516406
-
-
The observation of all the interband PC transitions at the same bias also shows that escape occurs through a common path (the ground state)
-
The observation of all the interband PC transitions at the same bias also shows that escape occurs through a common path (the ground state).
-
-
-
|